Skip to content
Related Articles

Related Articles

Improve Article

Minimize Array length by repeatedly replacing co-prime pairs with 1

  • Difficulty Level : Medium
  • Last Updated : 07 May, 2021
Geek Week

Given an array arr[] consisting of N elements, the task is to minimize the array length by replacing any two coprime array elements with 1.
Examples:

Input: arr[] = {2, 3, 5} 
Output:
Explanation: 
Replace {2, 3} with 1 modifies the array to {1, 5}. 
Replace {1, 5} with 1 modifies the array to {1}.
Input: arr[] = {6, 9, 15} 
Output:
Explanation: No coprime pairs exist in the array. Therefore, no reduction possible.

Naive Approach: The simplest approach is to iterate over the array and check for coprime pairs. If found replace it with 1 search for the next coprime pair and so on.

Time Complexity: O(N * log N) 
Auxiliary Space: O(1)
 

Efficient Approach: This approach is based on the fact:



1 is coprime with every number

The idea is to find if there is any co-prime pair present in the array or not. If found, then all the array elements can be reduced to 1 based on the above fact. Hence, if any co-prime pair is found, then, the required answer will be 1, else, the answer will be the initial size of the array.

Illustration: 
For arr[] = {2, 4, 6, 8, 9}
Here, as there exists a coprime pair {2, 9}, replacing them by 1 modifies the array to {1, 4, 6, 8}. 
Since 1 is coprime with every number, the array can be reduced further in following steps: 
{1, 4, 6, 8} -> {1, 6, 8} -> {1, 8} -> {1} 
Hence, the array can be reduced to size 1.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the final array
// length by replacing coprime pair with 1
bool hasCoprimePair(vector<int>& arr, int n)
{
 
    // Iterate over all pairs of element
    for (int i = 0; i < n - 1; i++) {
        for (int j = i + 1; j < n; j++) {
 
            // Check if gcd is 1
            if (__gcd(arr[i], arr[j]) == 1) {
                return true;
            }
        }
    }
 
    // If no coprime pair
    // found return false
    return false;
}
 
// Driver code
int main()
{
 
    int n = 3;
    vector<int> arr = { 6, 9, 15 };
 
    // Check if atleast one coprime
    // pair exists in the array
    if (hasCoprimePair(arr, n)) {
        cout << 1 << endl;
    }
 
    // If no such pair exists
    else {
        cout << n << endl;
    }
}

Java




// Java Program for the above approach
import java.util.*;
class GFG{
     
// Recursive function to return
// gcd of a and b 
static int __gcd(int a, int b) 
    return b == 0? a:__gcd(b, a % b);    
}
 
// Function to find the final array
// length by replacing coprime pair with 1
static boolean hasCoprimePair(int []arr, int n)
{
 
    // Iterate over all pairs of element
    for (int i = 0; i < n - 1; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
 
            // Check if gcd is 1
            if ((__gcd(arr[i], arr[j])) == 1)
            {
                return true;
            }
        }
    }
 
    // If no coprime pair
    // found return false
    return false;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3;
    int []arr = { 6, 9, 15 };
 
    // Check if atleast one coprime
    // pair exists in the array
    if (hasCoprimePair(arr, n))
    {
        System.out.print(1 + "\n");
    }
 
    // If no such pair exists
    else
    {
        System.out.print(n + "\n");
    }
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 program for the above approach
import math
 
# Function to find the final array
# length by replacing coprime pair with 1
def hasCoprimePair(arr, n):
 
    # Iterate over all pairs of element
    for i in range(n - 1):
        for j in range(i + 1, n):
 
            # Check if gcd is 1
            if (math.gcd(arr[i], arr[j]) == 1):
                return True
             
    # If no coprime pair
    # found return false
    return False
 
# Driver code
if __name__ == "__main__":
 
    n = 3
    arr = [ 6, 9, 15 ]
 
    # Check if atleast one coprime
    # pair exists in the array
    if (hasCoprimePair(arr, n)):
        print(1)
     
    # If no such pair exists
    else:
        print(n)
     
# This code is contributed by chitranayal

C#




// C# Program for the above approach
using System;
class GFG{
     
// Recursive function to return
// gcd of a and b 
static int __gcd(int a, int b) 
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Function to find the readonly array
// length by replacing coprime pair with 1
static bool hasCoprimePair(int []arr, int n)
{
 
    // Iterate over all pairs of element
    for (int i = 0; i < n - 1; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
 
            // Check if gcd is 1
            if ((__gcd(arr[i],
                       arr[j])) == 1)
            {
                return true;
            }
        }
    }
 
    // If no coprime pair
    // found return false
    return false;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 3;
    int []arr = { 6, 9, 15 };
 
    // Check if atleast one coprime
    // pair exists in the array
    if (hasCoprimePair(arr, n))
    {
        Console.Write(1 + "\n");
    }
 
    // If no such pair exists
    else
    {
        Console.Write(n + "\n");
    }
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript Program for the above approach
 
    // Recursive function to return
    // gcd of a and b
    function __gcd(a , b) {
        return b == 0 ? a : __gcd(b, a % b);
    }
 
    // Function to find the final array
    // length by replacing coprime pair with 1
    function hasCoprimePair(arr , n) {
 
        // Iterate over all pairs of element
        for (i = 0; i < n - 1; i++) {
            for (j = i + 1; j < n; j++) {
 
                // Check if gcd is 1
                if ((__gcd(arr[i], arr[j])) == 1) {
                    return true;
                }
            }
        }
 
        // If no coprime pair
        // found return false
        return false;
    }
 
    // Driver code
     
        var n = 3;
        var arr = [ 6, 9, 15 ];
 
        // Check if atleast one coprime
        // pair exists in the array
        if (hasCoprimePair(arr, n)) {
            document.write(1 + "\n");
        }
 
        // If no such pair exists
        else {
            document.write(n + "\n");
        }
// This code contributed by gauravrajput1
 
</script>
Output: 
3

 

Time Complexity: O(N2 * log N) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :