Minimal distance such that for every customer there is at least one vendor at given distance
Given N and M number of points on the straight line, denoting the positions of the customers and vendors respectively. Each vendor provides service to all customers, which are located at a distance that is no more than R from the vendor. The task is to find minimum R such that for each customer there is at least one vendor at the distance which is no more than R.
Examples:
Input: N = 3, M = 2, customer[] = {-2, 2, 4}, vendor[] = {-3, 0}
Output: 4
Explanation: 4 is the minimum distance such that every customer is given service by at least one vendor.Input: N = 5, M = 3, customer [] = {1, 5, 10, 14, 17}, vendor[] = {4, 11, 15}
Output: 3
Explanation: 3 is the minimum distance such that every customer is given service by at least one vendor.
Approach: This problem can be solved by using the Two Pointer approach. Follow the steps below to solve the given problem.
- Take two pointers, i for the customer array and j for the vendor array.
- Start moving the i pointer and for every customer i move the j index while customer[i] > vendor[j].
- Now when vendor[j] >= customer[i],
- so check the right distance between them which is vendor[j] – customer[i] if j < m.
- Check the left distance i.e. customer[i] – vendor[j – 1] if j > 0.
- Find the minimum out of these two i.e the shortest range that the customer[i] can be covered with; achieved by the comparison of the distance of those two adjacent vendors.
- Then maximize this property as much as possible to get the answer.
- Finally print the answer found.
Below is the implementation of the above approach.
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimal R. int findMinDist( int customer[], int vendor[], int N, int M) { // Variable to keep track of the minimal r int minR = 0; int i = 0, j = 0; // Two pointer approach while (i < N) { if (j < M and vendor[j] < customer[i]) j++; else { int left_d = INT_MAX; int right_d = INT_MAX; // Find the distance of customer // from left vendor. if (j > 0) left_d = customer[i] - vendor[j - 1]; // Find the distance of customer // from right vendor. if (j < M) right_d = vendor[j] - customer[i]; // Find the minimum of // left_d and right_d. int mn_d = min(left_d, right_d); // Maximize the minimum distance. minR = max(minR, mn_d); // Go to the next customer. i++; } } return minR; } // Driver code int main() { int customer[] = { -2, 2, 4 }; int vendor[] = { -3, 0 }; int N = sizeof (customer) / sizeof (customer[0]); int M = sizeof (vendor) / sizeof (vendor[0]); // Function Call cout << findMinDist(customer, vendor, N, M); return 0; } |
Java
// Java code for the above approach import java.io.*; class GFG { static int INT_MAX = 2147483647 ; // Function to find the minimal R. static int findMinDist( int customer[], int vendor[], int N, int M) { // Variable to keep track of the minimal r int minR = 0 ; int i = 0 , j = 0 ; // Two pointer approach while (i < N) { if (j < M && vendor[j] < customer[i]) j++; else { int left_d = INT_MAX; int right_d = INT_MAX; // Find the distance of customer // from left vendor. if (j > 0 ) left_d = customer[i] - vendor[j - 1 ]; // Find the distance of customer // from right vendor. if (j < M) right_d = vendor[j] - customer[i]; // Find the minimum of // left_d and right_d. int mn_d = Math.min(left_d, right_d); // Maximize the minimum distance. minR =Math.max(minR, mn_d); // Go to the next customer. i++; } } return minR; } // Driver code public static void main(String[] args) { int customer[] = { - 2 , 2 , 4 }; int vendor[] = { - 3 , 0 }; int N = customer.length; int M = vendor.length; // Function Call System.out.println( findMinDist(customer, vendor, N, M)); } } // This code is contributed by Potta Lokesh |
Python3
# Python program for above approach INT_MAX = 2147483647 # Function to find the minimal R. def findMinDist(customer, vendor, N, M): # Variable to keep track of the minimal r minR = 0 i = 0 j = 0 # Two pointer approach while (i < N): if (j < M and vendor[j] < customer[i]): j + = 1 else : left_d = 10 * * 9 right_d = 10 * * 9 # Find the distance of customer # from left vendor. if (j > 0 ): left_d = customer[i] - vendor[j - 1 ] # Find the distance of customer # from right vendor. if (j < M): right_d = vendor[j] - customer[i] # Find the minimum of # left_d and right_d. mn_d = min (left_d, right_d) # Maximize the minimum distance. minR = max (minR, mn_d) # Go to the next customer. i + = 1 return minR # Driver code customer = [ - 2 , 2 , 4 ] vendor = [ - 3 , 0 ] N = len (customer) M = len (vendor) # Function Call print (findMinDist(customer, vendor, N, M)) # This code is contributed by Saurabh Jaiswal |
Javascript
<script> // JavaScript program for above approach const INT_MAX = 2147483647; // Function to find the minimal R. const findMinDist = (customer, vendor, N, M) => { // Variable to keep track of the minimal r let minR = 0; let i = 0, j = 0; // Two pointer approach while (i < N) { if (j < M && vendor[j] < customer[i]) j++; else { let left_d = INT_MAX; let right_d = INT_MAX; // Find the distance of customer // from left vendor. if (j > 0) left_d = customer[i] - vendor[j - 1]; // Find the distance of customer // from right vendor. if (j < M) right_d = vendor[j] - customer[i]; // Find the minimum of // left_d and right_d. let mn_d = Math.min(left_d, right_d); // Maximize the minimum distance. minR = Math.max(minR, mn_d); // Go to the next customer. i++; } } return minR; } // Driver code let customer = [-2, 2, 4]; let vendor = [-3, 0]; let N = customer.length; let M = vendor.length; // Function Call document.write(findMinDist(customer, vendor, N, M)); // This code is contributed by rakeshsahni </script> |
C#
// C# program to implement // the above approach using System; class GFG { static int INT_MAX = 2147483647; // Function to find the minimal R. static int findMinDist( int []customer, int []vendor, int N, int M) { // Variable to keep track of the minimal r int minR = 0; int i = 0, j = 0; // Two pointer approach while (i < N) { if (j < M && vendor[j] < customer[i]) j++; else { int left_d = INT_MAX; int right_d = INT_MAX; // Find the distance of customer // from left vendor. if (j > 0) left_d = customer[i] - vendor[j - 1]; // Find the distance of customer // from right vendor. if (j < M) right_d = vendor[j] - customer[i]; // Find the minimum of // left_d and right_d. int mn_d = Math.Min(left_d, right_d); // Maximize the minimum distance. minR =Math.Max(minR, mn_d); // Go to the next customer. i++; } } return minR; } // Driver code public static void Main() { int []customer = { -2, 2, 4 }; int []vendor = { -3, 0 }; int N = customer.Length; int M = vendor.Length; // Function Call Console.WriteLine( findMinDist(customer, vendor, N, M)); } } // This code is contributed by Samim Hossain Mondal. |
4
Time Complexity: O(N + M)
Auxiliary Space: O(1)
Please Login to comment...