Skip to content
Related Articles

Related Articles

Mid-Point Circle Drawing Algorithm
  • Difficulty Level : Easy
  • Last Updated : 19 Apr, 2020

The mid-point circle drawing algorithm is an algorithm used to determine the points needed for rasterizing a circle.

We use the mid-point algorithm to calculate all the perimeter points of the circle in the first octant and then print them along with their mirror points in the other octants. This will work because a circle is symmetric about it’s centre.

Circle octants

The algorithm is very similar to the Mid-Point Line Generation Algorithm. Here, only the boundary condition is different.

For any given pixel (x, y), the next pixel to be plotted is either (x, y+1) or (x-1, y+1). This can be decided by following the steps below.



  1. Find the mid-point p of the two possible pixels i.e (x-0.5, y+1)
  2. If p lies inside or on the circle perimeter, we plot the pixel (x, y+1), otherwise if it’s outside we plot the pixel (x-1, y+1)

Boundary Condition : Whether the mid-point lies inside or outside the circle can be decided by using the formula:-

Given a circle centered at (0,0) and radius r and a point p(x,y)
F(p) = x2 + y2 – r2

if F(p)<0, the point is inside the circle

F(p)=0, the point is on the perimeter

F(p)>0, the point is outside the circle

example

In our program we denote F(p) with P. The value of P is calculated at the mid-point of the two contending pixels i.e. (x-0.5, y+1). Each pixel is described with a subscript k.

Pk = (Xk — 0.5)2 + (yk + 1)2 – r2

Now,
xk+1 = xk or xk-1 , yk+1= yk +1

Pk+1 = (xk+1 – 0.5)2 + (yk+1 +1)2 – r2
= (xk+1 – 0.5)2 + [(yk +1) + 1]2 – r2
= (xk+1 – 0.5)2 + (yk +1)2 + 2(yk + 1) + 1 – r2
= (xk+1 – 0.5)2 + [ – (xk – 0.5)2 +(xk – 0.5)2 ] + (yk + 1)2 – r2 + (yk + 1) + 1



= Pk + (xk+1 – 0.5)2 – (xk – 0.5)2 + 2(yk + 1) + 1
= Pk + (x2k+1 – x2k)2 + (xk+1 – xk)2 + 2(yk + 1) + 1
= Pk + 2(yk +1) + 1, when Pk <=0 i.e the midpoint is inside the circle
(xk+1 = xk)
Pk + 2(yk +1) – 2(xk – 1) + 1, when Pk>0 I.e the mid point is outside the circle(xk+1 = xk-1)

The first point to be plotted is (r, 0) on the x-axis. The initial value of P is calculated as follows:-

P1 = (r – 0.5)2 + (0+1)2 – r2
= 1.25 – r
= 1 -r (When rounded off)

Examples:

Input : Centre -> (0, 0), Radius -> 3
Output : (3, 0) (3, 0) (0, 3) (0, 3)
         (3, 1) (-3, 1) (3, -1) (-3, -1)
         (1, 3) (-1, 3) (1, -3) (-1, -3)
         (2, 2) (-2, 2) (2, -2) (-2, -2)
Example 1 explained
Input : Centre -> (4, 4), Radius -> 2
Output : (6, 4) (6, 4) (4, 6) (4, 6)
         (6, 5) (2, 5) (6, 3) (2, 3)
         (5, 6) (3, 6) (5, 2) (3, 2)

C




// C program for implementing
// Mid-Point Circle Drawing Algorithm
#include<stdio.h>
  
// Implementing Mid-Point Circle Drawing Algorithm
void midPointCircleDraw(int x_centre, int y_centre, int r)
{
    int x = r, y = 0;
      
    // Printing the initial point on the axes 
    // after translation
    printf("(%d, %d) ", x + x_centre, y + y_centre);
      
    // When radius is zero only a single
    // point will be printed
    if (r > 0)
    {
        printf("(%d, %d) ", x + x_centre, -y + y_centre);
        printf("(%d, %d) ", y + x_centre, x + y_centre);
        printf("(%d, %d)\n", -y + x_centre, x + y_centre);
    }
      
    // Initialising the value of P
    int P = 1 - r;
    while (x > y)
    
        y++;
          
        // Mid-point is inside or on the perimeter
        if (P <= 0)
            P = P + 2*y + 1;
              
        // Mid-point is outside the perimeter
        else
        {
            x--;
            P = P + 2*y - 2*x + 1;
        }
          
        // All the perimeter points have already been printed
        if (x < y)
            break;
          
        // Printing the generated point and its reflection
        // in the other octants after translation
        printf("(%d, %d) ", x + x_centre, y + y_centre);
        printf("(%d, %d) ", -x + x_centre, y + y_centre);
        printf("(%d, %d) ", x + x_centre, -y + y_centre);
        printf("(%d, %d)\n", -x + x_centre, -y + y_centre);
          
        // If the generated point is on the line x = y then 
        // the perimeter points have already been printed
        if (x != y)
        {
            printf("(%d, %d) ", y + x_centre, x + y_centre);
            printf("(%d, %d) ", -y + x_centre, x + y_centre);
            printf("(%d, %d) ", y + x_centre, -x + y_centre);
            printf("(%d, %d)\n", -y + x_centre, -x + y_centre);
        }
    
}
  
// Driver code
int main()
{
    // To draw a circle of radius 3 centred at (0, 0)
    midPointCircleDraw(0, 0, 3);
    return 0;
}

CPP




// C++ program for implementing
// Mid-Point Circle Drawing Algorithm
#include<iostream>
using namespace std;
  
// Implementing Mid-Point Circle Drawing Algorithm
void midPointCircleDraw(int x_centre, int y_centre, int r)
{
    int x = r, y = 0;
      
    // Printing the initial point on the axes 
    // after translation
    cout << "(" << x + x_centre << ", " << y + y_centre << ") ";
      
    // When radius is zero only a single
    // point will be printed
    if (r > 0)
    {
        cout << "(" << x + x_centre << ", " << -y + y_centre << ") ";
        cout << "(" << y + x_centre << ", " << x + y_centre << ") ";
        cout << "(" << -y + x_centre << ", " << x + y_centre << ")\n";
    }
      
    // Initialising the value of P
    int P = 1 - r;
    while (x > y)
    
        y++;
          
        // Mid-point is inside or on the perimeter
        if (P <= 0)
            P = P + 2*y + 1;
        // Mid-point is outside the perimeter
        else
        {
            x--;
            P = P + 2*y - 2*x + 1;
        }
          
        // All the perimeter points have already been printed
        if (x < y)
            break;
          
        // Printing the generated point and its reflection
        // in the other octants after translation
        cout << "(" << x + x_centre << ", " << y + y_centre << ") ";
        cout << "(" << -x + x_centre << ", " << y + y_centre << ") ";
        cout << "(" << x + x_centre << ", " << -y + y_centre << ") ";
        cout << "(" << -x + x_centre << ", " << -y + y_centre << ")\n";
          
        // If the generated point is on the line x = y then 
        // the perimeter points have already been printed
        if (x != y)
        {
            cout << "(" << y + x_centre << ", " << x + y_centre << ") ";
            cout << "(" << -y + x_centre << ", " << x + y_centre << ") ";
            cout << "(" << y + x_centre << ", " << -x + y_centre << ") ";
            cout << "(" << -y + x_centre << ", " << -x + y_centre << ")\n";
        }
    }
}
  
// Driver code
int main()
{
    // To draw a circle of radius 3 centred at (0, 0)
    midPointCircleDraw(0, 0, 3);
    return 0;
}

Java




// Java program for implementing
// Mid-Point Circle Drawing Algorithm
class GFG {
      
    // Implementing Mid-Point Circle
    // Drawing Algorithm
    static void midPointCircleDraw(int x_centre, 
                            int y_centre, int r) 
    {
          
        int x = r, y = 0;
      
        // Printing the initial point
        // on the axes after translation
        System.out.print("(" + (x + x_centre) 
                + ", " + (y + y_centre) + ")");
      
        // When radius is zero only a single
        // point will be printed
        if (r > 0) {
              
            System.out.print("(" + (x + x_centre) 
                + ", " + (-y + y_centre) + ")");
                  
            System.out.print("(" + (y + x_centre) 
                 + ", " + (x + y_centre) + ")");
                   
            System.out.println("(" + (-y + x_centre)
                   + ", " + (x + y_centre) + ")");
        }
      
        // Initialising the value of P
        int P = 1 - r;
        while (x > y) {
              
            y++;
          
            // Mid-point is inside or on the perimeter
            if (P <= 0)
                P = P + 2 * y + 1;
          
            // Mid-point is outside the perimeter
            else {
                x--;
                P = P + 2 * y - 2 * x + 1;
            }
          
            // All the perimeter points have already 
            // been printed
            if (x < y)
                break;
          
            // Printing the generated point and its 
            // reflection in the other octants after
            // translation
            System.out.print("(" + (x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            System.out.print("(" + (-x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            System.out.print("(" + (x + x_centre) + 
                    ", " + (-y + y_centre) + ")");
                      
            System.out.println("(" + (-x + x_centre) 
                    + ", " + (-y + y_centre) + ")");
          
            // If the generated point is on the 
            // line x = y then the perimeter points
            // have already been printed
            if (x != y) {
                  
                System.out.print("(" + (y + x_centre)
                      + ", " + (x + y_centre) + ")");
                        
                System.out.print("(" + (-y + x_centre) 
                      + ", " + (x + y_centre) + ")");
                        
                System.out.print("(" + (y + x_centre) 
                      + ", " + (-x + y_centre) + ")");
                        
                System.out.println("(" + (-y + x_centre) 
                    + ", " + (-x + y_centre) +")");
            }
        }
    }
      
    // Driver code
    public static void main(String[] args) {
          
        // To draw a circle of radius 
        // 3 centred at (0, 0)
        midPointCircleDraw(0, 0, 3);
    }
}
  
// This code is contributed by Anant Agarwal.

Python3




# Python3 program for implementing 
# Mid-Point Circle Drawing Algorithm 
  
def midPointCircleDraw(x_centre, y_centre, r):
    x = r
    y = 0
      
    # Printing the initial point the 
    # axes after translation 
    print("(", x + x_centre, ", "
               y + y_centre, ")"
               sep = "", end = "") 
      
    # When radius is zero only a single 
    # point be printed 
    if (r > 0) :
      
        print("(", x + x_centre, ", ",
                  -y + y_centre, ")"
                  sep = "", end = "") 
        print("(", y + x_centre, ", "
                   x + y_centre, ")",
                   sep = "", end = "") 
        print("(", -y + x_centre, ", "
                    x + y_centre, ")", sep = "") 
      
    # Initialising the value of P 
    P = 1 -
  
    while x > y:
      
        y += 1
          
        # Mid-point inside or on the perimeter
        if P <= 0
            P = P + 2 * y + 1
              
        # Mid-point outside the perimeter 
        else:         
            x -= 1
            P = P + 2 * y - 2 * x + 1
          
        # All the perimeter points have 
        # already been printed 
        if (x < y):
            break
          
        # Printing the generated point its reflection 
        # in the other octants after translation 
        print("(", x + x_centre, ", ", y + y_centre,
                            ")", sep = "", end = "") 
        print("(", -x + x_centre, ", ", y + y_centre, 
                             ")", sep = "", end = "") 
        print("(", x + x_centre, ", ", -y + y_centre,
                             ")", sep = "", end = "") 
        print("(", -x + x_centre, ", ", -y + y_centre,
                                        ")", sep = "") 
          
        # If the generated point on the line x = y then 
        # the perimeter points have already been printed 
        if x != y:
          
            print("(", y + x_centre, ", ", x + y_centre, 
                                ")", sep = "", end = "") 
            print("(", -y + x_centre, ", ", x + y_centre,
                                 ")", sep = "", end = "") 
            print("(", y + x_centre, ", ", -x + y_centre,
                                 ")", sep = "", end = "") 
            print("(", -y + x_centre, ", ", -x + y_centre, 
                                            ")", sep = "")
                              
# Driver Code
if __name__ == '__main__':
      
    # To draw a circle of radius 3 
    # centred at (0, 0) 
    midPointCircleDraw(0, 0, 3)
  
  
# Contributed by: SHUBHAMSINGH10
# Improved by: siddharthx_07

C#




// C# program for implementing Mid-Point
// Circle Drawing Algorithm
using System;
  
class GFG {
      
    // Implementing Mid-Point Circle
    // Drawing Algorithm
    static void midPointCircleDraw(int x_centre, 
                            int y_centre, int r) 
    {
          
        int x = r, y = 0;
      
        // Printing the initial point on the
        // axes after translation
        Console.Write("(" + (x + x_centre) 
                + ", " + (y + y_centre) + ")");
      
        // When radius is zero only a single
        // point will be printed
        if (r > 0)
        {
              
            Console.Write("(" + (x + x_centre) 
                + ", " + (-y + y_centre) + ")");
                  
            Console.Write("(" + (y + x_centre) 
                + ", " + (x + y_centre) + ")");
                  
            Console.WriteLine("(" + (-y + x_centre)
                + ", " + (x + y_centre) + ")");
        }
      
        // Initialising the value of P
        int P = 1 - r;
        while (x > y)
        {
              
            y++;
          
            // Mid-point is inside or on the perimeter
            if (P <= 0)
                P = P + 2 * y + 1;
          
            // Mid-point is outside the perimeter
            else
            {
                x--;
                P = P + 2 * y - 2 * x + 1;
            }
          
            // All the perimeter points have already 
            // been printed
            if (x < y)
                break;
          
            // Printing the generated point and its 
            // reflection in the other octants after
            // translation
            Console.Write("(" + (x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            Console.Write("(" + (-x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            Console.Write("(" + (x + x_centre) + 
                    ", " + (-y + y_centre) + ")");
                      
            Console.WriteLine("(" + (-x + x_centre) 
                    + ", " + (-y + y_centre) + ")");
          
            // If the generated point is on the 
            // line x = y then the perimeter points
            // have already been printed
            if (x != y) 
            {
                Console.Write("(" + (y + x_centre)
                    + ", " + (x + y_centre) + ")");
                          
                Console.Write("(" + (-y + x_centre) 
                    + ", " + (x + y_centre) + ")");
                          
                Console.Write("(" + (y + x_centre) 
                    + ", " + (-x + y_centre) + ")");
                          
                Console.WriteLine("(" + (-y + x_centre) 
                    + ", " + (-x + y_centre) +")");
            }
        }
    }
      
    // Driver code
    public static void Main()
    {
          
        // To draw a circle of radius 
        // 3 centred at (0, 0)
        midPointCircleDraw(0, 0, 3);
    }
}
  
// This code is contributed by nitin mittal.

PHP




<?php
// PHP program for implementing
// Mid-Point Circle Drawing Algorithm
  
// Implementing Mid-Point 
// Circle Drawing Algorithm
function midPointCircleDraw($x_centre
                            $y_centre
                            $r)
{
    $x = $r
    $y = 0;
      
    // Printing the initial 
    // point on the axes 
    // after translation
    echo "(",$x + $x_centre,",", $y + $y_centre,")";
      
    // When radius is zero only a single
    // point will be printed
    if ($r > 0)
    {
        echo "(",$x + $x_centre,",", -$y + $y_centre,")";
        echo "(",$y + $x_centre,",", $x + $y_centre,")";
        echo "(",-$y + $x_centre,",", $x + $y_centre,")","\n";
    }
      
    // Initializing the value of P
    $P = 1 - $r;
    while ($x > $y)
    
        $y++;
          
        // Mid-point is inside 
        // or on the perimeter
        if ($P <= 0)
            $P = $P + 2 * $y + 1;
              
        // Mid-point is outside
        // the perimeter
        else
        {
            $x--;
            $P = $P + 2 * $y
                  2 * $x + 1;
        }
          
        // All the perimeter points
        // have already been printed
        if ($x < $y)
            break;
          
        // Printing the generated 
        // point and its reflection
        // in the other octants 
        // after translation
        echo "(",$x + $x_centre,",", $y + $y_centre,")";
        echo "(",-$x + $x_centre,",", $y + $y_centre,")";
        echo "(",$x +$x_centre,",", -$y + $y_centre,")";
        echo "(",-$x + $x_centre,",", -$y + $y_centre,")","\n";
          
        // If the generated point is 
        // on the line x = y then 
        // the perimeter points have 
        // already been printed
        if ($x != $y)
        {
            echo "(",$y + $x_centre,",", $x + $y_centre,")";
            echo "(",-$y + $x_centre,",", $x + $y_centre,")";
            echo "(",$y + $x_centre,",", -$x + $y_centre,")";
            echo "(",-$y + $x_centre,",", -$x + $y_centre,")","\n";
        }
    
}
  
    // Driver code
    // To draw a circle of radius
    // 3 centred at (0, 0)
    midPointCircleDraw(0, 0, 3);
      
// This code is contributed by nitin mittal.
?>

Output:

(3, 0) (3, 0) (0, 3) (0, 3)
(3, 1) (-3, 1) (3, -1) (-3, -1)
(1, 3) (-1, 3) (1, -3) (-1, -3)
(2, 2) (-2, 2) (2, -2) (-2, -2)

References : Midpoint Circle Algorithm
Image References : Octants of a circle, Rasterised Circle, the other images were created for this article by the geek

Thanks Tuhina Singh for improving this article.
This article is contributed by Nabaneet Roy. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up
Recommended Articles
Page :