Mid-Point Circle Drawing Algorithm

We need to plot the perimeter points of a circle whose center co-ordinates and radius are given using the Mid-Point Circle Drawing Algorithm.

We use the above algorithm to calculate all the perimeter points of the circle in the first octant and then print them along with their mirror points in the other octants. This will work only because a circle is symmetric about it’s centre.

Circle octants

The algorithm is very similar to the Mid-Point Line Generation Algorithm. Here, only the boundary condition is different.

For any given pixel (x, y), the next pixel to be plotted is either (x, y+1) or (x-1, y+1). This can be decided by following the steps below.

  1. Find the mid-point p of the two possible pixels i.e (x-0.5, y+1)
  2. If p lies inside or on the circle perimeter, we plot the pixel (x, y+1), otherwise if it’s outside we plot the pixel (x-1, y+1)

Boundary Condition : Whether the mid-point lies inside or outside the circle can be decided by using the formula:-

Given a circle centered at (0,0) and radius r and a point p(x,y)
F(p) = x2 + y2 – r2

if F(p)<0, the point is inside the circle

F(p)=0, the point is on the perimeter

F(p)>0, the point is outside the circle

example

In our program we denote F(p) with P. The value of P is calculated at the mid-point of the two contending pixels i.e. (x-0.5, y+1). Each pixel is described with a subscript k.

Pk = (Xk — 0.5)2 + (yk + 1)2 – r2

Now,
xk+1 = xk or xk-1 , yk+1= yk +1

Pk+1 = (xk+1 – 0.5)2 + (yk+1 +1)2 – r2
= (xk+1 – 0.5)2 + [(yk +1) + 1]2 – r2
= (xk+1 – 0.5)2 + (yk +1)2 + 2(yk + 1) + 1 – r2
= (xk+1 – 0.5)2 + [ – (xk – 0.5)2 +(xk – 0.5)2 ] + (yk + 1)2 – r2 + (yk + 1) + 1

= Pk + (xk+1 – 0.5)2 – (xk – 0.5)2 + 2(yk + 1) + 1
= Pk + (x2k+1 – x2k)2 + (xk+1 – xk)2 + 2(yk + 1) + 1
= Pk + 2(yk +1) + 1, when Pk <=0 i.e the midpoint is inside the circle
(xk+1 = xk)
Pk + 2(yk +1) – 2(xk – 1) + 1, when Pk>0 I.e the mid point is outside the circle(xk+1 = xk-1)

The first point to be plotted is (r, 0) on the x-axis. The initial value of P is calculated as follows:-

P1 = (r – 0.5)2 + (0+1)2 – r2
= 1.25 – r
= 1 -r (When rounded off)

Examples:

Input : Centre -> (0, 0), Radius -> 3
Output : (3, 0) (3, 0) (0, 3) (0, 3)
         (3, 1) (-3, 1) (3, -1) (-3, -1)
         (1, 3) (-1, 3) (1, -3) (-1, -3)
         (2, 2) (-2, 2) (2, -2) (-2, -2)
Example 1 explained
Input : Centre -> (4, 4), Radius -> 2
Output : (6, 4) (6, 4) (4, 6) (4, 6)
         (6, 5) (2, 5) (6, 3) (2, 3)
         (5, 6) (3, 6) (5, 2) (3, 2)

C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program for implementing
// Mid-Point Circle Drawing Algorithm
#include<stdio.h>
  
// Implementing Mid-Point Circle Drawing Algorithm
void midPointCircleDraw(int x_centre, int y_centre, int r)
{
    int x = r, y = 0;
      
    // Printing the initial point on the axes 
    // after translation
    printf("(%d, %d) ", x + x_centre, y + y_centre);
      
    // When radius is zero only a single
    // point will be printed
    if (r > 0)
    {
        printf("(%d, %d) ", x + x_centre, -y + y_centre);
        printf("(%d, %d) ", y + x_centre, x + y_centre);
        printf("(%d, %d)\n", -y + x_centre, x + y_centre);
    }
      
    // Initialising the value of P
    int P = 1 - r;
    while (x > y)
    
        y++;
          
        // Mid-point is inside or on the perimeter
        if (P <= 0)
            P = P + 2*y + 1;
              
        // Mid-point is outside the perimeter
        else
        {
            x--;
            P = P + 2*y - 2*x + 1;
        }
          
        // All the perimeter points have already been printed
        if (x < y)
            break;
          
        // Printing the generated point and its reflection
        // in the other octants after translation
        printf("(%d, %d) ", x + x_centre, y + y_centre);
        printf("(%d, %d) ", -x + x_centre, y + y_centre);
        printf("(%d, %d) ", x + x_centre, -y + y_centre);
        printf("(%d, %d)\n", -x + x_centre, -y + y_centre);
          
        // If the generated point is on the line x = y then 
        // the perimeter points have already been printed
        if (x != y)
        {
            printf("(%d, %d) ", y + x_centre, x + y_centre);
            printf("(%d, %d) ", -y + x_centre, x + y_centre);
            printf("(%d, %d) ", y + x_centre, -x + y_centre);
            printf("(%d, %d)\n", -y + x_centre, -x + y_centre);
        }
    
}
  
// Driver code
int main()
{
    // To draw a circle of radius 3 centred at (0, 0)
    midPointCircleDraw(0, 0, 3);
    return 0;
}

chevron_right


CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for implementing
// Mid-Point Circle Drawing Algorithm
#include<iostream>
using namespace std;
  
// Implementing Mid-Point Circle Drawing Algorithm
void midPointCircleDraw(int x_centre, int y_centre, int r)
{
    int x = r, y = 0;
      
    // Printing the initial point on the axes 
    // after translation
    cout << "(" << x + x_centre << ", " << y + y_centre << ") ";
      
    // When radius is zero only a single
    // point will be printed
    if (r > 0)
    {
        cout << "(" << x + x_centre << ", " << -y + y_centre << ") ";
        cout << "(" << y + x_centre << ", " << x + y_centre << ") ";
        cout << "(" << -y + x_centre << ", " << x + y_centre << ")\n";
    }
      
    // Initialising the value of P
    int P = 1 - r;
    while (x > y)
    
        y++;
          
        // Mid-point is inside or on the perimeter
        if (P <= 0)
            P = P + 2*y + 1;
        // Mid-point is outside the perimeter
        else
        {
            x--;
            P = P + 2*y - 2*x + 1;
        }
          
        // All the perimeter points have already been printed
        if (x < y)
            break;
          
        // Printing the generated point and its reflection
        // in the other octants after translation
        cout << "(" << x + x_centre << ", " << y + y_centre << ") ";
        cout << "(" << -x + x_centre << ", " << y + y_centre << ") ";
        cout << "(" << x + x_centre << ", " << -y + y_centre << ") ";
        cout << "(" << -x + x_centre << ", " << -y + y_centre << ")\n";
          
        // If the generated point is on the line x = y then 
        // the perimeter points have already been printed
        if (x != y)
        {
            cout << "(" << y + x_centre << ", " << x + y_centre << ") ";
            cout << "(" << -y + x_centre << ", " << x + y_centre << ") ";
            cout << "(" << y + x_centre << ", " << -x + y_centre << ") ";
            cout << "(" << -y + x_centre << ", " << -x + y_centre << ")\n";
        }
    }
}
  
// Driver code
int main()
{
    // To draw a circle of radius 3 centred at (0, 0)
    midPointCircleDraw(0, 0, 3);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for implementing
// Mid-Point Circle Drawing Algorithm
class GFG {
      
    // Implementing Mid-Point Circle
    // Drawing Algorithm
    static void midPointCircleDraw(int x_centre, 
                            int y_centre, int r) 
    {
          
        int x = r, y = 0;
      
        // Printing the initial point
        // on the axes after translation
        System.out.print("(" + (x + x_centre) 
                + ", " + (y + y_centre) + ")");
      
        // When radius is zero only a single
        // point will be printed
        if (r > 0) {
              
            System.out.print("(" + (x + x_centre) 
                + ", " + (-y + y_centre) + ")");
                  
            System.out.print("(" + (y + x_centre) 
                 + ", " + (x + y_centre) + ")");
                   
            System.out.println("(" + (-y + x_centre)
                   + ", " + (x + y_centre) + ")");
        }
      
        // Initialising the value of P
        int P = 1 - r;
        while (x > y) {
              
            y++;
          
            // Mid-point is inside or on the perimeter
            if (P <= 0)
                P = P + 2 * y + 1;
          
            // Mid-point is outside the perimeter
            else {
                x--;
                P = P + 2 * y - 2 * x + 1;
            }
          
            // All the perimeter points have already 
            // been printed
            if (x < y)
                break;
          
            // Printing the generated point and its 
            // reflection in the other octants after
            // translation
            System.out.print("(" + (x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            System.out.print("(" + (-x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            System.out.print("(" + (x + x_centre) + 
                    ", " + (-y + y_centre) + ")");
                      
            System.out.println("(" + (-x + x_centre) 
                    + ", " + (-y + y_centre) + ")");
          
            // If the generated point is on the 
            // line x = y then the perimeter points
            // have already been printed
            if (x != y) {
                  
                System.out.print("(" + (y + x_centre)
                      + ", " + (x + y_centre) + ")");
                        
                System.out.print("(" + (-y + x_centre) 
                      + ", " + (x + y_centre) + ")");
                        
                System.out.print("(" + (y + x_centre) 
                      + ", " + (-x + y_centre) + ")");
                        
                System.out.println("(" + (-y + x_centre) 
                    + ", " + (-x + y_centre) +")");
            }
        }
    }
      
    // Driver code
    public static void main(String[] args) {
          
        // To draw a circle of radius 
        // 3 centred at (0, 0)
        midPointCircleDraw(0, 0, 3);
    }
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python3

# Python3 program for implementing
# Mid-PoCircle Drawing Algorithm

# Implementing Mid-PoCircle Drawing
# Algorithm
def midPointCircleDraw(x_centre,
y_centre, r):

x = r
y = 0

# Printing the initial poon the
# axes after translation
print(“(“, x + x_centre, “, “,
y + y_centre, “)”,
sep = “”, end = “”)

# When radius is zero only a single
# powill be printed
if (r > 0) :

print(“(“, x + x_centre, “, “,
-y + y_centre, “)”,
sep = “”, end = “”)
print(“(“, y + x_centre, “, “,
x + y_centre, “)”,
sep = “”, end = “”)
print(“(“, -y + x_centre, “, “,
x + y_centre, “)”, sep = “”)

# Initialising the value of P
P = 1 – r
while (x > y) :

y += 1

# Mid-pois inside or on the
# perimeter
if (P <= 0): P = P + 2 * y + 1 # Mid-pois outside the perimeter else: x -= 1 P = P + 2 * y - 2 * x + 1 # All the perimeter points have # already been printed if (x < y): break # Printing the generated poand its reflection # in the other octants after translation print("(", x + x_centre, ", ", y + y_centre, ")", sep = "", end = "") print("(", -x + x_centre, ", ", y + y_centre, ")", sep = "", end = "") print("(", x + x_centre, ", ", -y + y_centre, ")", sep = "", end = "") print("(", -x + x_centre, ", ", -y + y_centre, ")", sep = "") # If the generated pois on the line x = y then # the perimeter points have already been printed if (x != y) : print("(", y + x_centre, ", ", x + y_centre, ")", sep = "", end = "") print("(", -y + x_centre, ", ", x + y_centre, ")", sep = "", end = "") print("(", y + x_centre, ", ", -x + y_centre, ")", sep = "", end = "") print("(", -y + x_centre, ", ", -x + y_centre, ")", sep = "") # Driver Code if __name__ == '__main__': # To draw a circle of radius 3 # centred at (0, 0) midPointCircleDraw(0, 0, 3) # This code is contributed by # SHUBHAMSINGH10 [tabby title="C#"]

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for implementing Mid-Point
// Circle Drawing Algorithm
using System;
  
class GFG {
      
    // Implementing Mid-Point Circle
    // Drawing Algorithm
    static void midPointCircleDraw(int x_centre, 
                            int y_centre, int r) 
    {
          
        int x = r, y = 0;
      
        // Printing the initial point on the
        // axes after translation
        Console.Write("(" + (x + x_centre) 
                + ", " + (y + y_centre) + ")");
      
        // When radius is zero only a single
        // point will be printed
        if (r > 0)
        {
              
            Console.Write("(" + (x + x_centre) 
                + ", " + (-y + y_centre) + ")");
                  
            Console.Write("(" + (y + x_centre) 
                + ", " + (x + y_centre) + ")");
                  
            Console.WriteLine("(" + (-y + x_centre)
                + ", " + (x + y_centre) + ")");
        }
      
        // Initialising the value of P
        int P = 1 - r;
        while (x > y)
        {
              
            y++;
          
            // Mid-point is inside or on the perimeter
            if (P <= 0)
                P = P + 2 * y + 1;
          
            // Mid-point is outside the perimeter
            else
            {
                x--;
                P = P + 2 * y - 2 * x + 1;
            }
          
            // All the perimeter points have already 
            // been printed
            if (x < y)
                break;
          
            // Printing the generated point and its 
            // reflection in the other octants after
            // translation
            Console.Write("(" + (x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            Console.Write("(" + (-x + x_centre) 
                    + ", " + (y + y_centre) + ")");
                      
            Console.Write("(" + (x + x_centre) + 
                    ", " + (-y + y_centre) + ")");
                      
            Console.WriteLine("(" + (-x + x_centre) 
                    + ", " + (-y + y_centre) + ")");
          
            // If the generated point is on the 
            // line x = y then the perimeter points
            // have already been printed
            if (x != y) 
            {
                Console.Write("(" + (y + x_centre)
                    + ", " + (x + y_centre) + ")");
                          
                Console.Write("(" + (-y + x_centre) 
                    + ", " + (x + y_centre) + ")");
                          
                Console.Write("(" + (y + x_centre) 
                    + ", " + (-x + y_centre) + ")");
                          
                Console.WriteLine("(" + (-y + x_centre) 
                    + ", " + (-x + y_centre) +")");
            }
        }
    }
      
    // Driver code
    public static void Main()
    {
          
        // To draw a circle of radius 
        // 3 centred at (0, 0)
        midPointCircleDraw(0, 0, 3);
    }
}
  
// This code is contributed by nitin mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program for implementing
// Mid-Point Circle Drawing Algorithm
  
// Implementing Mid-Point 
// Circle Drawing Algorithm
function midPointCircleDraw($x_centre
                            $y_centre
                            $r)
{
    $x = $r
    $y = 0;
      
    // Printing the initial 
    // point on the axes 
    // after translation
    echo "(",$x + $x_centre,",", $y + $y_centre,")";
      
    // When radius is zero only a single
    // point will be printed
    if ($r > 0)
    {
        echo "(",$x + $x_centre,",", -$y + $y_centre,")";
        echo "(",$y + $x_centre,",", $x + $y_centre,")";
        echo "(",-$y + $x_centre,",", $x + $y_centre,")","\n";
    }
      
    // Initialising the value of P
    $P = 1 - $r;
    while ($x > $y)
    
        $y++;
          
        // Mid-point is inside 
        // or on the perimeter
        if ($P <= 0)
            $P = $P + 2 * $y + 1;
              
        // Mid-point is outside
        // the perimeter
        else
        {
            $x--;
            $P = $P + 2 * $y
                  2 * $x + 1;
        }
          
        // All the perimeter points
        // have already been printed
        if ($x < $y)
            break;
          
        // Printing the generated 
        // point and its reflection
        // in the other octants 
        // after translation
        echo "(",$x + $x_centre,",", $y + $y_centre,")";
        echo "(",-$x + $x_centre,",", $y + $y_centre,")";
        echo "(",$x +$x_centre,",", -$y + $y_centre,")";
        echo "(",-$x + $x_centre,",", -$y + $y_centre,")","\n";
          
        // If the generated point is 
        // on the line x = y then 
        // the perimeter points have 
        // already been printed
        if ($x != $y)
        {
            echo "(",$y + $x_centre,",", $x + $y_centre,")";
            echo "(",-$y + $x_centre,",", $x + $y_centre,")";
            echo "(",$y + $x_centre,",", -$x + $y_centre,")";
            echo "(",-$y + $x_centre,",", -$x + $y_centre,")","\n";
        }
    
}
  
    // Driver code
    // To draw a circle of radius
    // 3 centred at (0, 0)
    midPointCircleDraw(0, 0, 3);
      
// This code is contributed by nitin mittal.
?>

chevron_right


Output:

(3, 0) (3, 0) (0, 3) (0, 3)
(3, 1) (-3, 1) (3, -1) (-3, -1)
(1, 3) (-1, 3) (1, -3) (-1, -3)
(2, 2) (-2, 2) (2, -2) (-2, -2)

References : Midpoint Circle Algorithm
Image References : Octants of a circle, Rasterised Circle, the other images were created for this article by the geek

Thanks Tuhina Singh for improving this article.
This article is contributed by Nabaneet Roy. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.