Skip to content
Related Articles

Related Articles

Merge two dataframes with same column names
  • Last Updated : 05 Apr, 2021

In order to merge two data frames with the same column names, we are going to use the pandas.concat(). This function does all the heavy lifting of performing concatenation operations along with an axis of Pandas objects while performing optional set logic (union or intersection) of the indexes (if any) on the other axes.

Syntax: concat(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)

Approach

  • Import module
  • Create or load first dataframe
  • Create or load second dataframe
  • Concatenate on the basis of same column names
  • Display result

Below are various examples that depict how to merge two data frames with the same column names:

Example 1: 

Python3




# import module
import pandas as pd
  
# assign dataframes
data1 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                     columns=['A', 'B', 'C'])
  
data2 = pd.DataFrame([[3, 4], [5, 6]],
                     columns=['A', 'C'])
  
# display dataframes
print('Dataframes:')
display(data1)
display(data2)
  
# merge two data frames
print('After merging:')
pd.concat([data1, data2], axis=0)

Output:



Example 2:

Python3




# import module
import pandas as pd
  
# assign dataframes
data1 = pd.DataFrame([[25, 77.5, 'A'], [30, 60.2, 'B']],
                     columns=['Students', 'Avg Marks', 'Section'])
  
data2 = pd.DataFrame([[52, 'C'], [25, 'A']],
                     columns=['Students', 'Section'])
  
# display dataframes
print('Dataframes:')
display(data1)
display(data2)
  
# merge two data frames
print('After merging:')
pd.concat([data1, data2], axis=0)

Output:

Example 3:

Python3




# import module
import pandas as pd
  
# assign dataframes
data1 = pd.DataFrame([[25, 77.5, 'A'], [30, 60.2, 'B'],
                      [25, 70.7, 'C']],
                     columns=['Students', 'Avg Marks', 'Section'])
  
data2 = pd.DataFrame([[30, 70.2, 'A'], [25, 65.2, 'B'],
                      [35, 77.7, 'C']],
                     columns=['Students', 'Avg Marks', 'Section'])
  
  
# display dataframes
print('Dataframes:')
display(data1)
display(data2)
  
# merge two data frames
print('After merging:')
pd.concat([data1, data2], axis=0)

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :