Merge Sort Tree (Smaller or equal elements in given row range)
Given an array where each element is a vector containing integers in sorted order. The task is to answer following queries:
count(start, end, k) : Count the numbers smaller than or equal to k in range from array index 'start' to 'end'.
For convenience we consider an n * n 2-D array where each row corresponds to an integer vector. Examples:
Input : ar[][] = {{2, 4, 5}, {3, 4, 9}, {6, 8, 10}} Queries[] = (0, 1, 5) (1, 2, 1) (0, 2, 6) Output : 5 0 6 Count of elements (smaller than or equal to 5) from 1st row (index 0) to 2nd row (index 1) is 5. Count of elements (smaller than or equal to 1) from 2nd row to 3nd row is 0 Count of elements (smaller than or equal to 6) from 1st row to 3nd row is 6.
The key idea is to build a Segment Tree with a vector at every node and the vector contains all the elements of the sub-range in a sorted order. And if we observe this segment tree structure this is somewhat similar to the tree formed during the merge sort algorithm(that is why it is called merge sort tree)
C++
// C++ program to count number of smaller or // equal to given number and given row range. #include <bits/stdc++.h> using namespace std; const int MAX = 1000; // Constructs a segment tree and stores sTree[] void buildTree( int idx, int ss, int se, vector< int > a[], vector< int > sTree[]) { /*leaf node*/ if (ss == se) { sTree[idx] = a[ss]; return ; } int mid = (ss + se) / 2; /* building left subtree */ buildTree(2 * idx + 1, ss, mid, a, sTree); /* building right subtree */ buildTree(2 * idx + 2, mid + 1, se, a, sTree); /* merging left and right child in sorted order */ merge(sTree[2 * idx + 1].begin(), sTree[2 * idx + 1].end(), sTree[2 * idx + 2].begin(), sTree[2 * idx + 2].end(), back_inserter(sTree[idx])); } // Recursive function to count smaller elements from row // a[ss] to a[se] and value smaller than or equal to k. int queryRec( int node, int start, int end, int ss, int se, int k, vector< int > a[], vector< int > sTree[]) { /* If out of range return 0 */ if (ss > end || start > se) return 0; /* if inside the range return count */ if (ss <= start && se >= end) { /* binary search over the sorted vector to return count >= X */ return upper_bound(sTree[node].begin(), sTree[node].end(), k) - sTree[node].begin(); } int mid = (start + end) / 2; /*searching in left subtree*/ int p1 = queryRec(2 * node + 1, start, mid, ss, se, k, a, sTree); /*searching in right subtree*/ int p2 = queryRec(2 * node + 2, mid + 1, end, ss, se, k, a, sTree); /*adding both the result*/ return p1 + p2; } // A wrapper over query(). int query( int start, int end, int k, vector< int > a[], int n, vector< int > sTree[]) { return queryRec(0, 0, n - 1, start, end, k, a, sTree); } // Driver code int main() { int n = 3; int arr[][3] = { { 2, 4, 5 }, { 3, 4, 9 }, { 6, 8, 10 } }; // build an array of vectors from above input vector< int > a[n]; for ( int i = 0; i < n; i++) for ( int j = 0; j < n; j++) a[i].push_back(arr[i][j]); // Construct segment tree vector< int > sTree[MAX]; buildTree(0, 0, n - 1, a, sTree); /* un-comment to print merge sort tree*/ /*for (int i=0;i<2*n-1;i++) { cout << i << " "; for (int j=0;j<sTree[i].size();j++) cout << sTree[i][j]<<" "; cout << endl; }*/ // Answer queries cout << query(0, 1, 5, a, n, sTree) << endl; cout << query(1, 2, 1, a, n, sTree) << endl; cout << query(0, 2, 6, a, n, sTree) << endl; return 0; } |
Java
import java.util.*; // JAVA program to count number of smaller or // equal to given number and given row range. public class mergeSortTree { static void buildTree( int idx, int ss, int se, ArrayList<Integer> a[], ArrayList<Integer> tree[]) { /*leaf node*/ if (ss == se) { tree[idx] = a[ss]; return ; } int mid = (ss + se) >> 1 ; /* building left subtree recursively*/ buildTree( 2 * idx + 1 , ss, mid, a, tree); /* building right subtree recursively*/ buildTree( 2 * idx + 2 , mid + 1 , se, a, tree); /* merging left and right child in sorted order */ tree[idx] = merge(tree[ 2 * idx + 1 ], tree[ 2 * idx + 2 ]); } static int upbound(ArrayList<Integer> temp, int val) { int lo = 0 ; int hi = temp.size() - 1 ; while (hi >= lo) { int mid = (lo + hi) >> 1 ; if (temp.get(mid) <= val) { lo = mid + 1 ; } else hi = mid - 1 ; } return lo; } static int queryRec( int node, int start, int end, int ss, int se, int k, ArrayList<Integer> a[], ArrayList<Integer> tree[]) { /* If out of range return 0 */ if (ss > end || se < start) return 0 ; /* if inside the range return count */ if (ss <= start && se >= end) { /* binary search over the sorted ArrayList to return count >= X */ return upbound(tree[node], k); } int mid = (start + end) / 2 ; /*searching in left subtree*/ int q1 = queryRec( 2 * node + 1 , start, mid, ss, se, k, a, tree); /*searching in right subtree*/ int q2 = queryRec( 2 * node + 2 , mid + 1 , end, ss, se, k, a, tree); /*adding both the result*/ return q1 + q2; } // A wrapper over query(). static int query( int start, int end, int k, ArrayList<Integer> a[], int n, ArrayList<Integer> sTree[]) { return queryRec( 0 , 0 , n - 1 , start, end, k, a, sTree); } // merge function static ArrayList<Integer> merge(ArrayList<Integer> a, ArrayList<Integer> b) { // Initialise Arraylist res with all elements of a ArrayList<Integer> res = new ArrayList<>(a); // Add all elements of b to res res.addAll(b); // sort ArrayList res Collections.sort(res); /*return sorted resultant ArrayList created from both ArrayLists a and b*/ return res; } // Driver code public static void main(String[] args) { int n = 3 ; int [][] arr = { { 2 , 4 , 5 }, { 3 , 4 , 9 }, { 6 , 8 , 10 } }; // build an array of ArrayLists from above input ArrayList<Integer> a[] = new ArrayList[n]; for ( int i = 0 ; i < n; i++) { a[i] = new ArrayList<Integer>(); for ( int j = 0 ; j < n; j++) a[i].add(arr[i][j]); } // Construct segment tree ArrayList<Integer> tree[] = new ArrayList[ 4 * n]; // tree buildTree( 0 , 0 , n - 1 , a, tree); /* un-comment to print merge sort tree*/ /*for(int i=0;i<4*n;i++) { System.out.println(tree[i]); }*/ // Answer queries System.out.println(query( 0 , 1 , 5 , a, n, tree)); System.out.println(query( 1 , 2 , 1 , a, n, tree)); System.out.println(query( 0 , 2 , 6 , a, n, tree)); } } // This code is contributed by sanketgolar51 |
Python3
import bisect # Constructs a segment tree and stores sTree[] def buildTree(idx, ss, se, a, sTree): # leaf node if ss = = se: sTree[idx] = a[ss] return mid = (ss + se) / / 2 # building left subtree buildTree( 2 * idx + 1 , ss, mid, a, sTree) # building right subtree buildTree( 2 * idx + 2 , mid + 1 , se, a, sTree) # merging left and right child in sorted order sTree[idx] = sorted (sTree[ 2 * idx + 1 ] + sTree[ 2 * idx + 2 ]) # Recursive function to count smaller elements from row # a[ss] to a[se] and value smaller than or equal to k. def queryRec(node, start, end, ss, se, k, a, sTree): # If out of range return 0 if ss > end or start > se: return 0 # if inside the range return count if ss < = start and se > = end: # binary search over the sorted list to return count >= k return bisect.bisect_right(sTree[node], k) - start mid = (start + end) / / 2 # searching in left subtree p1 = queryRec( 2 * node + 1 , start, mid, ss, se, k, a, sTree) # searching in right subtree p2 = queryRec( 2 * node + 2 , mid + 1 , end, ss, se, k, a, sTree) if p1 + p2 < 0 : return 0 # adding both the result return p1 + p2 # A wrapper over query(). def query(start, end, k, a, n, sTree): return queryRec( 0 , 0 , n - 1 , start, end, k, a, sTree) # Driver code if __name__ = = '__main__' : n = 3 arr = [[ 2 , 4 , 5 ], [ 3 , 4 , 9 ], [ 6 , 8 , 10 ]] # build an array of lists from above input a = [[] for _ in range (n)] for i in range (n): for j in range (n): a[i].append(arr[i][j]) # Construct segment tree sTree = [[] for _ in range ( 4 * n)] buildTree( 0 , 0 , n - 1 , a, sTree) # Answer queries print (query( 0 , 1 , 5 , a, n, sTree)) print (query( 1 , 2 , 1 , a, n, sTree)) print (query( 0 , 2 , 6 , a, n, sTree)) |
C#
// C# program to count number of smaller or equal to given // number and given row range. using System; using System.Collections.Generic; public class GFG { static void BuildTree( int idx, int ss, int se, List< int >[] a, List< int >[] tree) { /*leaf node*/ if (ss == se) { tree[idx] = a[ss]; return ; } int mid = (ss + se) / 2; /* building left subtree recursively*/ BuildTree(2 * idx + 1, ss, mid, a, tree); /* building right subtree recursively*/ BuildTree(2 * idx + 2, mid + 1, se, a, tree); /* merging left and right child in sorted order */ tree[idx] = Merge(tree[2 * idx + 1], tree[2 * idx + 2]); } static int Upbound(List< int > temp, int val) { int lo = 0; int hi = temp.Count - 1; while (hi >= lo) { int mid = (lo + hi) / 2; if (temp[mid] <= val) { lo = mid + 1; } else hi = mid - 1; } return lo; } static int QueryRec( int node, int start, int end, int ss, int se, int k, List< int >[] a, List< int >[] tree) { /* If out of range return 0 */ if (ss > end || se < start) return 0; /* if inside the range return count */ if (ss <= start && se >= end) { /* binary search over the sorted ArrayList to return count >= X */ return Upbound(tree[node], k); } int mid = (start + end) / 2; /*searching in left subtree*/ int q1 = QueryRec(2 * node + 1, start, mid, ss, se, k, a, tree); /*searching in right subtree*/ int q2 = QueryRec(2 * node + 2, mid + 1, end, ss, se, k, a, tree); /*adding both the result*/ return q1 + q2; } // A wrapper over query(). static int Query( int start, int end, int k, List< int >[] a, int n, List< int >[] sTree) { return QueryRec(0, 0, n - 1, start, end, k, a, sTree); } // merge function static List< int > Merge(List< int > a, List< int > b) { // Initialize List res with all elements of a List< int > res = new List< int >(a); // Add all elements of b to res res.AddRange(b); // sort List res res.Sort(); /*return sorted resultant List created from both Lists a and b*/ return res; } static public void Main() { // Code int n = 3; int [, ] arr = new int [, ] { { 2, 4, 5 }, { 3, 4, 9 }, { 6, 8, 10 } }; // build an array of lists from the above input. List< int >[] a = new List< int >[ n ]; for ( int i = 0; i < n; i++) { a[i] = new List< int >(); for ( int j = 0; j < n; j++) a[i].Add(arr[i, j]); } List< int >[] tree = new List< int >[ 4 * n ]; BuildTree(0, 0, n - 1, a, tree); Console.WriteLine(Query(0, 1, 5, a, n, tree)); Console.WriteLine(Query(1, 2, 1, a, n, tree)); Console.WriteLine(Query(0, 2, 6, a, n, tree)); } } // This code is contributed by karthik. |
Javascript
// JavaScript function to count number of smaller or // equal to given number and given row range. const mergeSortTree = { buildTree(idx, ss, se, a, tree) { /*leaf node*/ if (ss === se) { tree[idx] = a[ss]; return ; } let mid = Math.floor((ss + se) / 2); /* building left subtree recursively*/ this .buildTree(2 * idx + 1, ss, mid, a, tree); /* building right subtree recursively*/ this .buildTree(2 * idx + 2, mid + 1, se, a, tree); /* merging left and right child in sorted order */ tree[idx] = this .merge(tree[2 * idx + 1], tree[2 * idx + 2]); }, upbound(temp, val) { let lo = 0; let hi = temp.length - 1; while (hi >= lo) { let mid = Math.floor((lo + hi) / 2); if (temp[mid] <= val) { lo = mid + 1; } else { hi = mid - 1; } } return lo; }, queryRec(node, start, end, ss, se, k, a, tree) { /* If out of range return 0 */ if (ss > end || se < start) return 0; /* if inside the range return count */ if (ss <= start && se >= end) { /* binary search over the sorted ArrayList to return count >= X */ return this .upbound(tree[node], k); } let mid = Math.floor((start + end) / 2); /*searching in left subtree*/ let q1 = this .queryRec(2 * node + 1, start, mid, ss, se, k, a, tree); /*searching in right subtree*/ let q2 = this .queryRec(2 * node + 2, mid + 1, end, ss, se, k, a, tree); /*adding both the result*/ return q1 + q2; }, // A wrapper over query(). query(start, end, k, a, n, sTree) { return this .queryRec(0, 0, n - 1, start, end, k, a, sTree); }, // merge function merge(a, b) { // Initialise Arraylist res with all elements of a let res = [...a]; // Add all elements of b to res res = res.concat(b); // sort ArrayList res res.sort((a, b) => a - b); /*return sorted resultant ArrayList created from both ArrayLists a and b*/ return res; }, // Driver code main() { let n = 3; let arr = [[2, 4, 5], [3, 4, 9], [6, 8, 10]]; // build an array of ArrayLists from above input let a = []; for (let i = 0; i < n; i++) { a[i] = []; for (let j = 0; j < n; j++) { a[i].push(arr[i][j]); } } // Construct segment tree let tree = []; this .buildTree(0, 0, n - 1, a, tree); /* un-comment to print merge sort tree*/ /*for(let i=0;i<4*n;i++) { console.log(tree[i]); }*/ // Answer queries console.log( this .query(0, 1, 5, a, n, tree)); console.log( this .query(1, 2, 1, a, n, tree)); console.log( this .query(0, 2, 6, a, n, tree)); } }; mergeSortTree.main(); // This code is contributed by lokesh. |
5 0 6
buildTree() analysis : Build a merge sort tree takes O(N log N) time which is same as Merge Sort Algorithm. It also takes O(n log n) extra space. query() analysis : A range ‘start’ to ‘end’ can divided into at most Log(n) parts, where we will perform binary search on each part . Binary search requires O(Log n). Therefore total complexity O(Log n * Log n).
The space complexity of the program is O(n log n) since the segment tree is constructed using an array of vectors with a maximum size of n log n.
This article is contributed by Vineet Jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...