Median after K additional integers

Given an array of n integers. We are allowed to add k additional integer in the array and then find the median of the resultant array. We can choose any k values to be added.
Constraints:

k < n
n + k is always odd.

Examples :

Input : arr[] = { 4, 7 }
         k = 1 
Output : 7
Explanation : One of the possible solutions 
is to add 8 making the array [4, 7, 8], whose
median is 7

Input : arr[] = { 6, 1, 1, 1, 1 }
         k = 2
Output : 1
Explanation : No matter what elements we add 
to this array, the median will always be 1

We first sort the array in increasing order. Since value of k is less than n and n+k is always odd, we can always choose to add k elements which are greater than the largest element of array and (n+k)/2th element is always a median of the array.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find median of an array when
// we are allowed to add additional K integers
// to it.
#include <bits/stdc++.h>
using namespace std;
  
// Find median of array after adding k elements
void printMedian(int arr[], int n, int K)
{
    // sorting  the array in increasing order.
    sort(arr, arr + n);
  
    // printing the median of array.
    // Since n + K is always odd and K < n, 
    // so median of array always lies in 
    // the range of n.
    cout << arr[(n + K) / 2];
}
  
// driver function
int main()
{
    int arr[] = { 5, 3, 2, 8 };
    int k = 3;
    int n = sizeof(arr) / sizeof(arr[0]);
    printMedian(arr, n, k);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find median of an array when
// we are allowed to add additional K integers
// to it.
import java.util.Arrays;
  
class GFG {
      
    // Find median of array after adding k elements
    static void printMedian(int arr[], int n, int K)
    {
          
        // sorting the array in increasing order.
        Arrays.sort(arr);
      
        // printing the median of array.
        // Since n + K is always odd and K < n, 
        // so median of array always lies in 
        // the range of n.
        System.out.print(arr[(n + K) / 2]);
    }
      
    //Driver code
    public static void main (String[] args)
    {
          
        int arr[] = { 5, 3, 2, 8 };
        int k = 3;
        int n = arr.length;
          
        printMedian(arr, n, k);
    }
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 code to find median of an 
# array when we are allowed to add
# additional K integers to it.
  
# Find median of array after 
# adding k elements
def printMedian (arr, n, K):
      
    # sorting the array in 
    # increasing order.
    arr.sort()
      
    # printing the median of array.
    # Since n + K is always odd 
    # and K < n, so median of 
    # array always lies in 
    # the range of n.
    print( arr[int((n + K) / 2)])
  
# driver function
arr = [ 5, 3, 2, 8 ]
k = 3
n = len(arr)
printMedian(arr, n, k)
  
# This code is contributed by "Sharad_Bhardwaj".

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find median of an array when
// we are allowed to add additional K integers
// to it.
using System;
  
class GFG
{
    // Find median of array after adding k elements
    static void printMedian(int []arr, int n, int K)
    {
        // sorting  the array in increasing order.
        Array.Sort(arr);
       
        // printing the median of array.
        // Since n + K is always odd and K < n, 
        // so median of array always lies in 
        // the range of n.
        Console.Write(arr[(n + K) / 2]);
    }
      
    //Driver code
    public static void Main ()
    {
    int []arr = { 5, 3, 2, 8 };
        int k = 3;
        int n = arr.Length;
        printMedian(arr, n, k);
    }
}
  
// This code is contributed by  anant321.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find median 
// of an array when we are allowed 
// to add additional K integers to it.
  
// Find median of array 
// after adding k elements
function printMedian($arr, $n, $K)
{
    // sorting the array 
    // in increasing order.
    sort($arr);
  
    // printing the median of 
    // array. Since n + K is 
    // always odd and K < n, 
    // so median of array always 
    // lies in the range of n.
    echo $arr[($n + $K) / 2];
}
  
// Driver Code
$arr = array( 5, 3, 2, 8 );
$k = 3;
$n = count($arr);
printMedian($arr, $n, $k);
  
// This code is contributed by Sam007
?>

chevron_right



Output :

8

This article is contributed by Saloni Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Sam007