Median after K additional integers

Given an array of n integers. We are allowed to add k additional integer in the array and then find the median of the resultant array. We can choose any k values to be added.
Constraints:

```k < n
n + k is always odd.
```

Examples :

```Input : arr[] = { 4, 7 }
k = 1
Output : 7
Explanation : One of the possible solutions
is to add 8 making the array [4, 7, 8], whose
median is 7

Input : arr[] = { 6, 1, 1, 1, 1 }
k = 2
Output : 1
Explanation : No matter what elements we add
to this array, the median will always be 1
```

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We first sort the array in increasing order. Since value of k is less than n and n+k is always odd, we can always choose to add k elements which are greater than the largest element of array and (n+k)/2th element is always a median of the array.

C++

 `// CPP program to find median of an array when ` `// we are allowed to add additional K integers ` `// to it. ` `#include ` `using` `namespace` `std; ` ` `  `// Find median of array after adding k elements ` `void` `printMedian(``int` `arr[], ``int` `n, ``int` `K) ` `{ ` `    ``// sorting  the array in increasing order. ` `    ``sort(arr, arr + n); ` ` `  `    ``// printing the median of array. ` `    ``// Since n + K is always odd and K < n,  ` `    ``// so median of array always lies in  ` `    ``// the range of n. ` `    ``cout << arr[(n + K) / 2]; ` `} ` ` `  `// driver function ` `int` `main() ` `{ ` `    ``int` `arr[] = { 5, 3, 2, 8 }; ` `    ``int` `k = 3; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]); ` `    ``printMedian(arr, n, k); ` `    ``return` `0; ` `} `

Java

 `// Java program to find median of an array when ` `// we are allowed to add additional K integers ` `// to it. ` `import` `java.util.Arrays; ` ` `  `class` `GFG { ` `     `  `    ``// Find median of array after adding k elements ` `    ``static` `void` `printMedian(``int` `arr[], ``int` `n, ``int` `K) ` `    ``{ ` `         `  `        ``// sorting the array in increasing order. ` `        ``Arrays.sort(arr); ` `     `  `        ``// printing the median of array. ` `        ``// Since n + K is always odd and K < n,  ` `        ``// so median of array always lies in  ` `        ``// the range of n. ` `        ``System.out.print(arr[(n + K) / ``2``]); ` `    ``} ` `     `  `    ``//Driver code ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `         `  `        ``int` `arr[] = { ``5``, ``3``, ``2``, ``8` `}; ` `        ``int` `k = ``3``; ` `        ``int` `n = arr.length; ` `         `  `        ``printMedian(arr, n, k); ` `    ``} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

Python3

 `# Python3 code to find median of an  ` `# array when we are allowed to add ` `# additional K integers to it. ` ` `  `# Find median of array after  ` `# adding k elements ` `def` `printMedian (arr, n, K): ` `     `  `    ``# sorting the array in  ` `    ``# increasing order. ` `    ``arr.sort() ` `     `  `    ``# printing the median of array. ` `    ``# Since n + K is always odd  ` `    ``# and K < n, so median of  ` `    ``# array always lies in  ` `    ``# the range of n. ` `    ``print``( arr[``int``((n ``+` `K) ``/` `2``)]) ` ` `  `# driver function ` `arr ``=` `[ ``5``, ``3``, ``2``, ``8` `] ` `k ``=` `3` `n ``=` `len``(arr) ` `printMedian(arr, n, k) ` ` `  `# This code is contributed by "Sharad_Bhardwaj". `

C#

 `// C# program to find median of an array when ` `// we are allowed to add additional K integers ` `// to it. ` `using` `System; ` ` `  `class` `GFG ` `{ ` `    ``// Find median of array after adding k elements ` `    ``static` `void` `printMedian(``int` `[]arr, ``int` `n, ``int` `K) ` `    ``{ ` `        ``// sorting  the array in increasing order. ` `        ``Array.Sort(arr); ` `      `  `        ``// printing the median of array. ` `        ``// Since n + K is always odd and K < n,  ` `        ``// so median of array always lies in  ` `        ``// the range of n. ` `        ``Console.Write(arr[(n + K) / 2]); ` `    ``} ` `     `  `    ``//Driver code ` `    ``public` `static` `void` `Main () ` `    ``{ ` `    ``int` `[]arr = { 5, 3, 2, 8 }; ` `        ``int` `k = 3; ` `        ``int` `n = arr.Length; ` `        ``printMedian(arr, n, k); ` `    ``} ` `} ` ` `  `// This code is contributed by  anant321. `

PHP

 ` `

Output :

```8
```

This article is contributed by Saloni Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

My Personal Notes arrow_drop_up

Improved By : Sam007

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.