Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximum XOR of Two Numbers in an Array

  • Difficulty Level : Hard
  • Last Updated : 17 Nov, 2021

Given an array Arr of non-negative integers of size N. The task is to find the maximum possible xor between two numbers present in the array.
Example
 

Input: Arr = {25, 10, 2, 8, 5, 3} 
Output: 28 
The maximum result is 5 ^ 25 = 28 
Input: Arr = {1, 2, 3, 4, 5, 6, 7} 
Output:
The maximum result is 1 ^ 6 = 7 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Naive Approach: A Simple Solution is to generate all pairs of the given array and compute XOR of the pairs. Finally, return the maximum XOR value. This solution takes O(N^{2})      time.
Below is the implementation of the above approach: 
 

C++




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// maximum xor
int max_xor(int arr[], int n)
{
 
    int maxXor = 0;
 
    // Calculating xor of each pair
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            maxXor = max(maxXor,
                         arr[i] ^ arr[j]);
        }
    }
    return maxXor;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 25, 10, 2, 8, 5, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << max_xor(arr, n) << endl;
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
    // Function to return the
    // maximum xor
    static int max_xor(int arr[], int n)
    {
        int maxXor = 0;
 
        // Calculating xor of each pair
        for (int i = 0; i < n; i++)
        {
            for (int j = i + 1; j < n; j++)
            {
                maxXor = Math.max(maxXor,
                        arr[i] ^ arr[j]);
            }
        }
        return maxXor;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = {25, 10, 2, 8, 5, 3};
        int n = arr.length;
 
        System.out.println(max_xor(arr, n));
    }
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation
 
# Function to return the
# maximum xor
def max_xor(arr, n):
 
    maxXor = 0;
 
    # Calculating xor of each pair
    for i in range(n):
        for j in range(i + 1, n):
            maxXor = max(maxXor,\
                         arr[i] ^ arr[j]);
 
    return maxXor;
 
# Driver Code
if __name__ == '__main__':
 
    arr = [ 25, 10, 2, 8, 5, 3 ];
    n = len(arr);
 
    print(max_xor(arr, n));
 
# This code is contributed by 29AjayKumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the
// maximum xor
static int max_xor(int []arr, int n)
{
    int maxXor = 0;
 
    // Calculating xor of each pair
    for (int i = 0; i < n; i++)
    {
        for (int j = i + 1; j < n; j++)
        {
            maxXor = Math.Max(maxXor,
                              arr[i] ^ arr[j]);
        }
    }
    return maxXor;
}
 
// Driver Code
public static void Main()
{
    int []arr = {25, 10, 2, 8, 5, 3};
    int n = arr.Length;
 
    Console.WriteLine(max_xor(arr, n));
}
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript implementation
 
// Function to return the
// maximum xor
function max_xor(arr, n)
{
 
    let maxXor = 0;
 
    // Calculating xor of each pair
    for (let i = 0; i < n; i++) {
        for (let j = i + 1; j < n; j++) {
            maxXor = Math.max(maxXor,
                         arr[i] ^ arr[j]);
        }
    }
    return maxXor;
}
 
// Driver Code
 
    let arr = [ 25, 10, 2, 8, 5, 3 ];
    let n = arr.length;
 
    document.write(max_xor(arr, n));
 
</script>

 
 

Output: 
28

 

 

Time Complexity: O(N^{2})      , where N is the size of the array

Auxiliary Space: O(1)
Efficient Approach: The approach is similar to this article where the task is to find maximum AND value pair
So the idea is to change the problem statement from finding maximum xor of two numbers in an array to -> find two numbers in an array, such that xor of which equals to a number X. In this case, X will be the maximum number we want to achieve till i-th bit.
To find the largest value of an XOR operation, the value of xor should have every bit to be a set bit i.e 1. In a 32 bit number, the goal is to get the most 1 set starting left to right.
To evaluate each bit, there is a mask needed for that bit. A mask defines which bit should present in the answer and which bit is not. Here we will use mask to keep the prefix for every number ( means by taking the ans with the mask how many bits are remaining from the number ) in the input till the i-th bit then with the list of possible numbers in our set, after inserting the number we will evaluate if we can update the max for that bit position to be 1.
Below is the implementation of the above approach: 
 

 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// maximum xor
int max_xor(int arr[], int n)
{
    int maxx = 0, mask = 0;
 
    set<int> se;
 
    for (int i = 30; i >= 0; i--) {
 
        // set the i'th bit in mask
        // like 100000, 110000, 111000..
        mask |= (1 << i);
 
        for (int i = 0; i < n; ++i) {
 
            // Just keep the prefix till
            // i'th bit neglecting all
            // the bit's after i'th bit
            se.insert(arr[i] & mask);
        }
 
        int newMaxx = maxx | (1 << i);
 
        for (int prefix : se) {
 
            // find two pair in set
            // such that a^b = newMaxx
            // which is the highest
            // possible bit can be obtained
            if (se.count(newMaxx ^ prefix)) {
                maxx = newMaxx;
                break;
            }
        }
 
        // clear the set for next
        // iteration
        se.clear();
    }
 
    return maxx;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 25, 10, 2, 8, 5, 3 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << max_xor(arr, n) << endl;
 
    return 0;
}

Java




// Java implementation of the above approach
import java.util.*;
class GFG
{
 
// Function to return the
// maximum xor
static int max_xor(int arr[], int n)
{
    int maxx = 0, mask = 0;
 
    HashSet<Integer> se = new HashSet<Integer>();
 
    for (int i = 30; i >= 0; i--)
    {
 
        // set the i'th bit in mask
        // like 100000, 110000, 111000..
        mask |= (1 << i);
 
        for (int j = 0; j < n; ++j)
        {
 
            // Just keep the prefix till
            // i'th bit neglecting all
            // the bit's after i'th bit
            se.add(arr[j] & mask);
        }
 
        int newMaxx = maxx | (1 << i);
 
        for (int prefix : se)
        {
 
            // find two pair in set
            // such that a^b = newMaxx
            // which is the highest
            // possible bit can be obtained
            if (se.contains(newMaxx ^ prefix))
            {
                maxx = newMaxx;
                break;
            }
        }
 
        // clear the set for next
        // iteration
        se.clear();
    }
    return maxx;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 25, 10, 2, 8, 5, 3 };
    int n = arr.length;
 
    System.out.println(max_xor(arr, n));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the above approach
 
# Function to return the
# maximum xor
def max_xor( arr , n):
     
    maxx = 0
    mask = 0;
 
    se = set()
     
    for i in range(30, -1, -1):
         
        # set the i'th bit in mask
        # like 100000, 110000, 111000..
        mask |= (1 << i)
        newMaxx = maxx | (1 << i)
     
        for i in range(n):
             
            # Just keep the prefix till
            # i'th bit neglecting all
            # the bit's after i'th bit
            se.add(arr[i] & mask)
 
        for prefix in se:
             
            # find two pair in set
            # such that a^b = newMaxx
            # which is the highest
            # possible bit can be obtained
            if (newMaxx ^ prefix) in se:
                maxx = newMaxx
                break
                 
        # clear the set for next
        # iteration
        se.clear()
    return maxx
 
# Driver Code
arr = [ 25, 10, 2, 8, 5, 3 ]
n = len(arr)
print(max_xor(arr, n))
 
# This code is contributed by ANKITKUMAR34

C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
     
class GFG
{
 
// Function to return the
// maximum xor
static int max_xor(int []arr, int n)
{
    int maxx = 0, mask = 0;
 
    HashSet<int> se = new HashSet<int>();
 
    for (int i = 30; i >= 0; i--)
    {
 
        // set the i'th bit in mask
        // like 100000, 110000, 111000..
        mask |= (1 << i);
 
        for (int j = 0; j < n; ++j)
        {
 
            // Just keep the prefix till
            // i'th bit neglecting all
            // the bit's after i'th bit
            se.Add(arr[j] & mask);
        }
 
        int newMaxx = maxx | (1 << i);
 
        foreach (int prefix in se)
        {
 
            // find two pair in set
            // such that a^b = newMaxx
            // which is the highest
            // possible bit can be obtained
            if (se.Contains(newMaxx ^ prefix))
            {
                maxx = newMaxx;
                break;
            }
        }
 
        // clear the set for next
        // iteration
        se.Clear();
    }
    return maxx;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 25, 10, 2, 8, 5, 3 };
    int n = arr.Length;
 
    Console.WriteLine(max_xor(arr, n));
}
}
 
// This code is contributed by Princi Singh
Output: 
28

 

Time Complexity: O(Nlog(M))      , where N is the size of the array and M is the maximum number present in the array
Auxiliary Space: O(logM)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :