Given an array Arr of non-negative integers of size N. The task is to find the maximum possible xor between two numbers present in the array.
Example:
Input: Arr = {25, 10, 2, 8, 5, 3}
Output: 28
The maximum result is 5 ^ 25 = 28Input: Arr = {1, 2, 3, 4, 5, 6, 7}
Output: 7
The maximum result is 1 ^ 6 = 7
Naive Approach: A Simple Solution is to generate all pairs of the given array and compute XOR of the pairs. Finally, return maximum XOR value. This solution takes time.
Below is the implementation of the above approach:
C++
// C++ implementation #include <bits/stdc++.h> using namespace std; // Function to return the // maximum xor int max_xor( int arr[], int n) { int maxXor = 0; // Calculating xor of each pair for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { maxXor = max(maxXor, arr[i] ^ arr[j]); } } return maxXor; } // Driver Code int main() { int arr[] = { 25, 10, 2, 8, 5, 3 }; int n = sizeof (arr) / sizeof (arr[0]); cout << max_xor(arr, n) << endl; return 0; } |
Java
// Java implementation of the approach class GFG { // Function to return the // maximum xor static int max_xor( int arr[], int n) { int maxXor = 0 ; // Calculating xor of each pair for ( int i = 0 ; i < n; i++) { for ( int j = i + 1 ; j < n; j++) { maxXor = Math.max(maxXor, arr[i] ^ arr[j]); } } return maxXor; } // Driver Code public static void main(String[] args) { int arr[] = { 25 , 10 , 2 , 8 , 5 , 3 }; int n = arr.length; System.out.println(max_xor(arr, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation # Function to return the # maximum xor def max_xor(arr, n): maxXor = 0 ; # Calculating xor of each pair for i in range (n): for j in range (i + 1 , n): maxXor = max (maxXor,\ arr[i] ^ arr[j]); return maxXor; # Driver Code if __name__ = = '__main__' : arr = [ 25 , 10 , 2 , 8 , 5 , 3 ]; n = len (arr); print (max_xor(arr, n)); # This code is contributed by 29AjayKumar |
C#
// C# implementation of the approach using System; class GFG { // Function to return the // maximum xor static int max_xor( int []arr, int n) { int maxXor = 0; // Calculating xor of each pair for ( int i = 0; i < n; i++) { for ( int j = i + 1; j < n; j++) { maxXor = Math.Max(maxXor, arr[i] ^ arr[j]); } } return maxXor; } // Driver Code public static void Main() { int []arr = {25, 10, 2, 8, 5, 3}; int n = arr.Length; Console.WriteLine(max_xor(arr, n)); } } // This code is contributed by AnkitRai01 |
28
Time Complexity: , where N is the size of the array
Efficient Approach: The approach is similar to this article where the task is to find maximum AND value pair.
So the idea is to change the problem statement from finding maximum xor of two numbers in an array to -> find two numbers in an array, such that xor of which equals to a number X. In this case, X will be the maximum number we want to achieve till i-th bit.
To find the largest value of an XOR operation, the value of xor should have every bit to be a set bit i.e 1. In a 32 bit number, the goal is to get the most 1 set starting left to right.
To evaluate each bit, there is a mask needed for that bit. A mask defines which bit should present in the answer and which bit is not. Here we will use mask to keep the prefix for every number ( means by taking the ans with the mask how many bits are remaining from the number ) in the input till the i-th bit then with the list of possible numbers in our set, after inserting the number we will evaluate if we can update the max for that bit position to be 1.
Below is the implementation of the above approach:
C++
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; // Function to return the // maximum xor int max_xor( int arr[], int n) { int maxx = 0, mask = 0; set< int > se; for ( int i = 30; i >= 0; i--) { // set the i'th bit in mask // like 100000, 110000, 111000.. mask |= (1 << i); for ( int i = 0; i < n; ++i) { // Just keep the prefix till // i'th bit neglecting all // the bit's after i'th bit se.insert(arr[i] & mask); } int newMaxx = maxx | (1 << i); for ( int prefix : se) { // find two pair in set // such that a^b = newMaxx // which is the highest // possible bit can be obtained if (se.count(newMaxx ^ prefix)) { maxx = newMaxx; break ; } } // clear the set for next // iteration se.clear(); } return maxx; } // Driver Code int main() { int arr[] = { 25, 10, 2, 8, 5, 3 }; int n = sizeof (arr) / sizeof (arr[0]); cout << max_xor(arr, n) << endl; return 0; } |
Java
// Java implementation of the above approach import java.util.*; class GFG { // Function to return the // maximum xor static int max_xor( int arr[], int n) { int maxx = 0 , mask = 0 ; HashSet<Integer> se = new HashSet<Integer>(); for ( int i = 30 ; i >= 0 ; i--) { // set the i'th bit in mask // like 100000, 110000, 111000.. mask |= ( 1 << i); for ( int j = 0 ; j < n; ++j) { // Just keep the prefix till // i'th bit neglecting all // the bit's after i'th bit se.add(arr[j] & mask); } int newMaxx = maxx | ( 1 << i); for ( int prefix : se) { // find two pair in set // such that a^b = newMaxx // which is the highest // possible bit can be obtained if (se.contains(newMaxx ^ prefix)) { maxx = newMaxx; break ; } } // clear the set for next // iteration se.clear(); } return maxx; } // Driver Code public static void main(String[] args) { int arr[] = { 25 , 10 , 2 , 8 , 5 , 3 }; int n = arr.length; System.out.println(max_xor(arr, n)); } } // This code is contributed by Rajput-Ji |
Python3
# Python3 implementation of the above approach # Function to return the # maximum xor def max_xor( arr , n): maxx = 0 mask = 0 ; se = set () for i in range ( 30 , - 1 , - 1 ): # set the i'th bit in mask # like 100000, 110000, 111000.. mask | = ( 1 << i) newMaxx = maxx | ( 1 << i) for i in range (n): # Just keep the prefix till # i'th bit neglecting all # the bit's after i'th bit se.add(arr[i] & mask) for prefix in se: # find two pair in set # such that a^b = newMaxx # which is the highest # possible bit can be obtained if (newMaxx ^ prefix) in se: maxx = newMaxx break # clear the set for next # iteration se.clear() return maxx # Driver Code arr = [ 25 , 10 , 2 , 8 , 5 , 3 ] n = len (arr) print (max_xor(arr, n)) # This code is contributed by ANKITKUMAR34 |
C#
// C# implementation of the above approach using System; using System.Collections.Generic; class GFG { // Function to return the // maximum xor static int max_xor( int []arr, int n) { int maxx = 0, mask = 0; HashSet< int > se = new HashSet< int >(); for ( int i = 30; i >= 0; i--) { // set the i'th bit in mask // like 100000, 110000, 111000.. mask |= (1 << i); for ( int j = 0; j < n; ++j) { // Just keep the prefix till // i'th bit neglecting all // the bit's after i'th bit se.Add(arr[j] & mask); } int newMaxx = maxx | (1 << i); foreach ( int prefix in se) { // find two pair in set // such that a^b = newMaxx // which is the highest // possible bit can be obtained if (se.Contains(newMaxx ^ prefix)) { maxx = newMaxx; break ; } } // clear the set for next // iteration se.Clear(); } return maxx; } // Driver Code public static void Main(String[] args) { int []arr = { 25, 10, 2, 8, 5, 3 }; int n = arr.Length; Console.WriteLine(max_xor(arr, n)); } } // This code is contributed by Princi Singh |
28
Time Complexity: , where N is the size of the array and M is the maximum number present in the array.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer Complete Interview Preparation Course.