Given a matrix, mat[][] of dimensions N * M, the task is to print the maximum bitwise XOR value that can be obtained for a path from the top-left cell (0, 0) to the bottom-right cell (N – 1, M – 1) of the given matrix. Only possible moves from any cell (i, j) are (i + 1, j) and (i, j + 1).
Note: Bitwise XOR value of a path is defined as the bitwise XOR of all possible elements on that path.
Examples:
Input: mat[][] = {{3, 2, 1}, {6, 5, 4}, {7, 8, 9}}
Output: 13
Explanation:
Possible paths from (0, 0) to (N – 1, M – 1) and their bitwise XOR values are:
(0, 0) -> (0, 1) -> (0, 2) -> (1, 2) -> (2, 2) having XOR value 13.
(0, 0) -> (0, 1) -> (1, 1) -> (1, 2) -> (2, 2) having XOR value 9.
(0, 0) -> (1, 0) -> (1, 1) -> (1, 2) -> (2, 2) having XOR value 13.
(0, 0) -> (0, 1) -> (1, 1) -> (2, 1) -> (2, 2) having XOR value 5.
(0, 0) -> (1, 0) -> (1, 1) -> (2, 1) -> (2, 2) having XOR value 1.
(0, 0) -> (1, 0) -> (2, 0) -> (2, 1) -> (2, 2) having XOR value 3
Therefore, the maximum bitwise XOR value for all possible paths is 13.
Input: mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
Output: 15
Approach: The idea is to generate all possible paths from the top-left cell (0, 0) to the bottom-right cell (N – 1, M – 1) of the given matrix using Recursion and print the maximum XOR value of all possible paths. The following are the recurrence relations and their base cases:
Recurrence relation:
printMaxXOR(i, j, xorValue) = max(printMaxXOR(i – 1, j, xorValue ^ mat[i][j]), printMaxXOR(i, j – 1, xorValue ^ mat[i][j]))
Base Case:
if i = 0 and j = 0: return mat[i][j] ^ xorValue
if i = 0: return printMaxXOR(i, j – 1, mat[i][j] ^ xorValue)
if j = 0: return printMaxXOR(i – 1, j, mat[i][j] ^ xorValue)
Follow the steps below to solve the problem:
- Initialize a variable, say xorValue to store the bitwise XOR of all possible elements on the path from the top-left cell (0, 0) to the bottom-right cell (N – 1, M – 1).
- Use the above recurrence relation to find the maximum XOR value of all possible paths from the top-left cell (0, 0) to the bottom-right cell (N – 1, M – 1).
- Finally, print the maximum XOR value of all possible paths from the top-left cell (0, 0) to the bottom-right cell (N – 1, M – 1).
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int printMaxXOR(vector<vector< int > >& mat,
int i, int j,
int xorValue)
{
if (i == 0 && j == 0) {
return mat[i][j] ^ xorValue;
}
if (i == 0) {
return printMaxXOR(mat, i, j - 1,
mat[i][j] ^ xorValue);
}
if (j == 0) {
return printMaxXOR(mat, i - 1, j,
mat[i][j] ^ xorValue);
}
int X
= printMaxXOR(mat, i - 1,
j, mat[i][j] ^ xorValue);
int Y
= printMaxXOR(mat, i, j - 1,
mat[i][j] ^ xorValue);
return max(X, Y);
}
int main()
{
vector<vector< int > > mat
= { { 3, 2, 1 },
{ 6, 5, 4 },
{ 7, 8, 9 } };
int N = mat.size();
int M = mat[0].size();
int xorValue = 0;
cout << printMaxXOR(mat, N - 1,
M - 1, xorValue);
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
public static int printMaxXOR( int [][] mat,
int i, int j,
int xorValue)
{
if (i == 0 && j == 0 )
{
return mat[i][j] ^ xorValue;
}
if (i == 0 ) {
return printMaxXOR(mat, i,
j - 1 ,
mat[i][j] ^ xorValue);
}
if (j == 0 ) {
return printMaxXOR(mat,
i - 1 , j,
mat[i][j] ^ xorValue);
}
int X = printMaxXOR(mat,
i - 1 , j,
mat[i][j] ^ xorValue);
int Y = printMaxXOR(mat,
i, j - 1 ,
mat[i][j] ^ xorValue);
return Math.max(X, Y);
}
public static void main(String[] args)
{
int [][] mat
= { { 3 , 2 , 1 },
{ 6 , 5 , 4 },
{ 7 , 8 , 9 } };
int N = mat.length;
int M = mat[ 0 ].length;
int xorValue = 0 ;
System.out.println(
printMaxXOR(mat, N - 1 , M - 1 , xorValue));
}
}
|
Python3
def printMaxXOR(mat, i, j,
xorValue):
if (i = = 0 and j = = 0 ):
return mat[i][j] ^ xorValue
if (i = = 0 ):
return printMaxXOR(mat, i, j - 1 ,
mat[i][j] ^
xorValue)
if (j = = 0 ):
return printMaxXOR(mat, i - 1 , j,
mat[i][j] ^
xorValue)
X = printMaxXOR(mat, i - 1 ,
j, mat[i][j] ^
xorValue)
Y = printMaxXOR(mat, i, j - 1 ,
mat[i][j] ^
xorValue)
return max (X, Y)
if __name__ = = "__main__" :
mat = [[ 3 , 2 , 1 ],
[ 6 , 5 , 4 ],
[ 7 , 8 , 9 ]]
N = len (mat)
M = len (mat[ 0 ])
xorValue = 0
print (printMaxXOR(mat, N - 1 ,
M - 1 ,
xorValue))
|
C#
using System;
class GFG{
public static int printMaxXOR( int [,] mat,
int i, int j,
int xorValue)
{
if (i == 0 && j == 0)
{
return mat[i,j] ^
xorValue;
}
if (i == 0)
{
return printMaxXOR(mat, i,
j - 1,
mat[i,j] ^
xorValue);
}
if (j == 0)
{
return printMaxXOR(mat,
i - 1, j,
mat[i,j] ^
xorValue);
}
int X = printMaxXOR(mat,
i - 1, j,
mat[i,j] ^
xorValue);
int Y = printMaxXOR(mat,
i, j - 1,
mat[i,j] ^
xorValue);
return Math.Max(X, Y);
}
public static void Main(String[] args)
{
int [,] mat = {{3, 2, 1},
{6, 5, 4},
{7, 8, 9}};
int N = mat.GetLength(0);
int M = mat.GetLength(1);
int xorValue = 0;
Console.WriteLine(printMaxXOR(mat, N - 1,
M - 1,
xorValue));
}
}
|
Javascript
<script>
function printMaxXOR(mat, i, j, xorValue)
{
if (i == 0 && j == 0)
{
return mat[i][j] ^ xorValue;
}
if (i == 0) {
return printMaxXOR(mat, i,
j - 1,
mat[i][j] ^ xorValue);
}
if (j == 0) {
return printMaxXOR(mat,
i - 1, j,
mat[i][j] ^ xorValue);
}
let X = printMaxXOR(mat,
i - 1, j,
mat[i][j] ^ xorValue);
let Y = printMaxXOR(mat,
i, j - 1,
mat[i][j] ^ xorValue);
return Math.max(X, Y);
}
let mat
= [[ 3, 2, 1 ],
[ 6, 5, 4 ],
[ 7, 8, 9 ]];
let N = mat.length;
let M = mat[0].length;
let xorValue = 0;
document.write(
printMaxXOR(mat, N - 1, M - 1, xorValue));
</script>
|
Time Complexity: O(2N)
Auxiliary Space: O(1)