Given an N-ary tree, the task is to find the maximum width of the given tree. The maximum width of a tree is the maximum of width among all levels.
Examples:
Input:
4 / | \ 2 3 -5 / \ /\ -1 3 -2 6Output: 4
Explanation:
Width of 0th level is 1.
Width of 1st level is 3.
Width of 2nd level is 4.
Therefore, the maximum width is 4Input:
1 / | \ 2 -1 3 / \ \ 4 5 8 / / | \ 2 6 12 7Output:4
Approach: This problem can be solved using BFS. The idea is to perform level order traversal of the tree. While doing traversal, process nodes of different levels separately. For every level being processed, count the number of nodes present at each level and keep track of the maximum count. Follow the steps below to solve the problem:
- Initialize a variable, say maxWidth to store the required maximum width of the tree.
- Initialize a Queue to perform the level order traversal of the given tree.
- Push the root node into the queue.
- If size of the queue exceeds maxWidth for any level, then update maxWidth to the size of the queue.
- Traverse the queue and push all the nodes of the next level into the queue and pop all the nodes of the current level.
- Repeat the above steps until all the levels of the tree are traversed.
- Finally, return the final value of maxWidth.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum width of // the tree using level order traversal int maxWidth( int N, int M, vector< int > cost, vector<vector< int > > s) { // Store the edges of the tree vector< int > adj[N]; for ( int i = 0; i < M; i++) { adj[s[i][0]].push_back( s[i][1]); } // Stores maximum width // of the tree int result = 0; // Stores the nodes // of each level queue< int > q; // Insert root node q.push(0); // Perform level order // traversal on the tree while (!q.empty()) { // Stores the size of // the queue int count = q.size(); // Update maximum width result = max(count, result); // Push the nodes of the next // level and pop the elements // of the current level while (count--) { // Get element from the // front the Queue int temp = q.front(); q.pop(); // Push all nodes of the next level. for ( int i = 0; i < adj[temp].size(); i++) { q.push(adj[temp][i]); } } } // Return the result. return result; } // Driver Code int main() { int N = 11, M = 10; vector<vector< int > > edges; edges.push_back({ 0, 1 }); edges.push_back({ 0, 2 }); edges.push_back({ 0, 3 }); edges.push_back({ 1, 4 }); edges.push_back({ 1, 5 }); edges.push_back({ 3, 6 }); edges.push_back({ 4, 7 }); edges.push_back({ 6, 10 }); edges.push_back({ 6, 8 }); edges.push_back({ 6, 9 }); vector< int > cost = { 1, 2, -1, 3, 4, 5, 8, 2, 6, 12, 7 }; /* Constructed tree is: 1 / | \ 2 -1 3 / \ \ 4 5 8 / / | \ 2 6 12 7 */ cout << maxWidth(N, M, cost, edges); return 0; } |
Java
// Java program to implement // the above approach import java.io.*; import java.util.*; class GFG { // Function to find the maximum width of // the tree using level order traversal static int maxWidth( int N, int M,ArrayList<Integer> cost, ArrayList<ArrayList<Integer> > s) { // Store the edges of the tree ArrayList<ArrayList<Integer> > adj = new ArrayList<ArrayList<Integer> >(); for ( int i = 0 ; i < N; i++) { adj.add( new ArrayList<Integer>()); } for ( int i = 0 ; i < M; i++) { adj.get(s.get(i).get( 0 )).add(s.get(i).get( 1 )); } // Stores maximum width // of the tree int result = 0 ; // Stores the nodes // of each level Queue<Integer> q = new LinkedList<>(); // Insert root node q.add( 0 ); // Perform level order // traversal on the tree while (q.size() != 0 ) { // Stores the size of // the queue int count = q.size(); // Update maximum width result = Math.max(count, result); // Push the nodes of the next // level and pop the elements // of the current level while (count--> 0 ) { // Get element from the // front the Queue int temp = q.remove(); // Push all nodes of the next level. for ( int i = 0 ; i < adj.get(temp).size(); i++) { q.add(adj.get(temp).get(i)); } } } // Return the result. return result; } // Driver Code public static void main (String[] args) { int N = 11 , M = 10 ; ArrayList<ArrayList<Integer> > edges = new ArrayList<ArrayList<Integer> >(); edges.add( new ArrayList<Integer>(Arrays.asList( 0 , 1 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 0 , 2 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 0 , 3 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 1 , 4 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 1 , 5 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 3 , 6 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 4 , 7 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 6 , 10 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 6 , 8 ))); edges.add( new ArrayList<Integer>(Arrays.asList( 6 , 9 ))); ArrayList<Integer> cost = new ArrayList<Integer>(Arrays.asList( 1 , 2 , - 1 , 3 , 4 , 5 , 8 , 2 , 6 , 12 , 7 )); /* Constructed tree is: 1 / | \ 2 -1 3 / \ \ 4 5 8 / / | \ 2 6 12 7 */ System.out.println(maxWidth(N, M, cost, edges)); } } // This code is contributed by avanitrachhadiya2155 |
Python3
# Python3 program to implement # the above approach from collections import deque # Function to find the maximum width of #. he tree using level order traversal def maxWidth(N, M, cost, s): # Store the edges of the tree adj = [[] for i in range (N)] for i in range (M): adj[s[i][ 0 ]].append(s[i][ 1 ]) # Stores maximum width # of the tree result = 0 # Stores the nodes # of each level q = deque() # Insert root node q.append( 0 ) # Perform level order # traversal on the tree while ( len (q) > 0 ): # Stores the size of # the queue count = len (q) # Update maximum width result = max (count, result) # Push the nodes of the next # level and pop the elements # of the current level while (count > 0 ): # Get element from the # front the Queue temp = q.popleft() # Push all nodes of the next level. for i in adj[temp]: q.append(i) count - = 1 # Return the result. return result # Driver Code if __name__ = = '__main__' : N = 11 M = 10 edges = [] edges.append([ 0 , 1 ]) edges.append([ 0 , 2 ]) edges.append([ 0 , 3 ]) edges.append([ 1 , 4 ]) edges.append([ 1 , 5 ]) edges.append([ 3 , 6 ]) edges.append([ 4 , 7 ]) edges.append([ 6 , 1 ]) edges.append([ 6 , 8 ]) edges.append([ 6 , 9 ]) cost = [ 1 , 2 , - 1 , 3 , 4 , 5 , 8 , 2 , 6 , 12 , 7 ] # Constructed tree is: # 1 # / | \ # 2 -1 3 # / \ \ # 4 5 8 # / / | \ # 2 6 12 7 print (maxWidth(N, M, cost, edges)) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; class GFG{ // Function to find the maximum width of // the tree using level order traversal static int maxWidth( int N, int M, List< int > cost, List<List< int >> s) { // Store the edges of the tree List<List< int >> adj = new List<List< int >>(); for ( int i = 0; i < N; i++) { adj.Add( new List< int >()); } for ( int i = 0; i < M; i++) { adj[s[i][0]].Add(s[i][1]); } // Stores maximum width // of the tree int result = 0; // Stores the nodes // of each level Queue< int > q = new Queue< int >(); // Insert root node q.Enqueue(0); // Perform level order // traversal on the tree while (q.Count != 0) { // Stores the size of // the queue int count = q.Count; // Update maximum width result = Math.Max(count, result); // Push the nodes of the next // level and pop the elements // of the current level while (count-- > 0) { // Get element from the // front the Queue int temp = q.Dequeue(); // Push all nodes of the next level. for ( int i = 0; i < adj[temp].Count; i++) { q.Enqueue(adj[temp][i]); } } } // Return the result. return result; } // Driver Code static public void Main() { int N = 11, M = 10; List<List< int >> edges = new List<List< int >>(); edges.Add( new List< int >(){0, 1}); edges.Add( new List< int >(){0, 2}); edges.Add( new List< int >(){0, 3}); edges.Add( new List< int >(){1, 4}); edges.Add( new List< int >(){1, 5}); edges.Add( new List< int >(){3, 6}); edges.Add( new List< int >(){4, 7}); edges.Add( new List< int >(){6, 10}); edges.Add( new List< int >(){6, 8}); edges.Add( new List< int >(){6, 9}); List< int > cost = new List< int >(){ 1, 2, -1, 3, 4, 5, 8, 2, 6, 12, 7 }; /* Constructed tree is: 1 / | \ 2 -1 3 / \ \ 4 5 8 / / | \ 2 6 12 7 */ Console.WriteLine(maxWidth(N, M, cost, edges)); } } // This code is contributed by rag2127 |
4
Time Complexity: O(N)
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.