Skip to content
Related Articles

Related Articles

Improve Article

Maximum value of B less than A such that A ^ B = A + B

  • Difficulty Level : Easy
  • Last Updated : 21 May, 2021
Geek Week

Given an integer A, the task is to find the maximum value possible(B) which is less than A, such that xor of these two numbers A and B are equal to their sum, that is A ^ B = A + B.

Examples:  

Input: A = 4 
Output:
Explanation: 
There are many such integers, such that A ^ B = A + B 
Some of these integers are – 
4 ^ 3 = 4 + 3 = 7 
4 ^ 2 = 4 + 2 = 6 
4 ^ 1 = 4 + 1 = 5 
4 ^ 0 = 4 + 0 = 4 
The maximum of these values is 3

Input:
Output:
There is no integer except 0 such that A + B = A ^ B 

Approach: The idea is to use the fact that 



A + B &= (A \wedge B) + 2*(A \& B) and to get the value of A + B = A \wedge B, the value of (A & B) must be equal to 0.   

=> A & B = 0
=> B = ~A

For Example:  

A = 4 (1 0 0)  
B = ~ A = (0 1 1) = 3 

 Below is the implementation of the above approach:

C++




// C++ implementation to find
// maximum value of B such that
// A ^ B = A + B
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum
// value of B such that A^B = A+B
void maxValue(int a)
{
     
    // Binary Representation of A
    string c = bitset<3>(a).to_string();
    string b = "";
     
    // Loop to find the negation
    // of the integer A
    for(int i = 0; i < c.length(); i++)
    {
        if ((c[i] - '0') == 1)
            b += '0';
        else
            b += '1';
    }
        
    // Output
    cout << bitset<3>(b).to_ulong();
}
 
// Driver code
int main()
{
    int a = 4;
     
    // Function Call
    maxValue(a);
     
    return 0;
}
 
// This code is contributed by divyeshrabadiya07

Java




// Java implementation to find
// maximum value of B such that
// A ^ B = A + B
  
// Function to find the maximum
// value of B such that A^B = A+B
class GFG
{
 
static void maxValue(int a)
{
      
    // Binary Representation of A
    String c = Integer.toBinaryString(a);
     
    String b = "";
      
    // Loop to find the negation
    // of the integer A
    for (int i = 0; i < c.length(); i++)
    {
        if((c.charAt(i)-'0')==1)
            b +='0';
        else
            b+='1';
    }
      
    // output
    System.out.print(Integer.parseInt(b, 2));
    
}
  
// Driver Code
public static void main(String []args)
{
    int a = 4;
      
    // Function Call
    maxValue(a);
}
}
 
// This code is contributed by chitranayal

Python3




# Python3 implementation to find
# maximum value of B such that
# A ^ B = A + B
 
# Function to find the maximum
# value of B such that A^B = A+B
def maxValue(a):
     
    # Binary Representation of A
    a = bin(a)[2:]
     
    b = ''
     
    # Loop to find the negation
    # of the integer A
    for i in list(a):
        b += str(int(not int(i)))
         
    # output
    print(int(b, 2))
    return int(b, 2)
 
# Driver Code
if __name__ == '__main__':
    a = 4
     
    # Function Call
    maxValue(a)

C#




// C# implementation to find
// maximum value of B such that
// A ^ B = A + B
   
// Function to find the maximum
// value of B such that A^B = A+B
using System;
using System.Collections.Generic;
 
class GFG
{
  
static void maxValue(int a)
{
       
    // Binary Representation of A
    String c = Convert.ToString(a, 2);
      
    String b = "";
       
    // Loop to find the negation
    // of the integer A
    for (int i = 0; i < c.Length; i++)
    {
        if((c[i] - '0') == 1)
            b += '0';
        else
            b += '1';
    }
       
    // output
    Console.Write(Convert.ToInt32(b, 2));
     
}
   
// Driver Code
public static void Main(String []args)
{
    int a = 4;
       
    // Function Call
    maxValue(a);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript implementation to find
// maximum value of B such that
// A ^ B = A + B
 
// Function to find the maximum
// value of B such that A^B = A+B
function maxValue(a)
{
     
    // Binary Representation of A
    var c = a.toString(2);
    var b = "";
     
    // Loop to find the negation
    // of the integer A
    for(var i = 0; i < c.length; i++)
    {
        if ((c[i] - '0') == 1)
            b += '0';
        else
            b += '1';
    }
        
    // Output
    document.write(parseInt(b,2));
}
 
// Driver code
var a = 4;
 
// Function Call
maxValue(a);
</script>
Output: 
3

 

Performance Analysis: 

  • Time Complexity: In the above-given approach, there is the conversion from decimal to binary which takes O(logN) time in the worst case. Therefore, the time complexity for this approach will be O(logN).
  • Auxiliary Space Complexity: In the above-given approach, there is no extra space used. Therefore, the auxiliary space complexity for the above approach will be O(1)

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :