Skip to content
Related Articles

Related Articles

Improve Article

Maximum value of |arr[i] – arr[j]| + |i – j|

  • Difficulty Level : Hard
  • Last Updated : 20 Jul, 2021

Given a array of N positive integers. The task is to find the maximum value of |arr[i] – arr[j]| + |i – j|, where 0 <= i, j <= N – 1 and arr[i], arr[j] belong to the array.

Examples: 

Input : N = 4, arr[] = { 1, 2, 3, 1 } 
Output : 4
Explanation:
Choose i = 0 and j = 2. This will result in |1-3|+|0-2| = 4 which is the maximum possible value.

Input : N = 3, arr[] = { 1, 1, 1 }
Output : 2

Method 1: The idea is to use brute force i.e iterate in two for loops.



Below is the implementation of this approach:  

C++




#include <bits/stdc++.h>
using namespace std;
#define MAX 10
 
// Return maximum value of |arr[i] - arr[j]| + |i - j|
int findValue(int arr[], int n)
{
    int ans = 0;
 
    // Iterating two for loop, one for
    // i and another for j.
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
 
            // Evaluating |arr[i] - arr[j]| + |i - j|
            // and compare with previous maximum.
            ans = max(ans,
                      abs(arr[i] - arr[j]) + abs(i - j));
 
    return ans;
}
 
// Driven Program
int main()
{
    int arr[] = { 1, 2, 3, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findValue(arr, n) << endl;
 
    return 0;
}

Java




// java program to find maximum value of
// |arr[i] - arr[j]| + |i - j|
class GFG {
    static final int MAX = 10;
 
    // Return maximum value of
    // |arr[i] - arr[j]| + |i - j|
    static int findValue(int arr[], int n)
    {
        int ans = 0;
 
        // Iterating two for loop,
        // one for i and another for j.
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
 
                // Evaluating |arr[i] - arr[j]|
                // + |i - j| and compare with
                // previous maximum.
                ans = Math.max(ans,
                               Math.abs(arr[i] - arr[j])
                               + Math.abs(i - j));
 
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 1 };
        int n = arr.length;
 
        System.out.println(findValue(arr, n));
    }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python3 program to find
# maximum value of
# |arr[i] - arr[j]| + |i - j|
 
# Return maximum value of
# |arr[i] - arr[j]| + |i - j|
def findValue(arr, n):
    ans = 0;
     
    # Iterating two for loop,
    # one for i and another for j.
    for i in range(n):
        for j in range(n):
             
            # Evaluating |arr[i] -
            # arr[j]| + |i - j|
            # and compare with
            # previous maximum.
            ans = ans if ans>(abs(arr[i] - arr[j]) +
                              abs(i - j)) else (abs(arr[i] -
                                      arr[j]) + abs(i - j)) ;
    return ans;
     
# Driver Code
arr = [1, 2, 3, 1];
n = len(arr);
print(findValue(arr, n));
 
# This code is contributed by mits.

C#




// C# program to find maximum value of
// |arr[i] - arr[j]| + |i - j|
using System;
 
class GFG {
     
    // Return maximum value of
    // |arr[i] - arr[j]| + |i - j|
    static int findValue(int []arr, int n)
    {
        int ans = 0;
     
        // Iterating two for loop,
        // one for i and another for j.
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
     
                // Evaluating |arr[i] - arr[j]|
                // + |i - j| and compare with
                // previous maximum.
                ans = Math.Max(ans,
                    Math.Abs(arr[i] - arr[j])
                            + Math.Abs(i - j));
     
        return ans;
    }
     
    // Driver code
    public static void Main ()
    {
        int []arr = { 1, 2, 3, 1 };
        int n =arr.Length;
         
        Console.Write(findValue(arr, n));
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// PHP program to find maximum value of
// |arr[i] - arr[j]| + |i - j|
$MAX = 10;
 
// Return maximum value of
// |arr[i] - arr[j]| + |i - j|
function findValue($arr, $n)
{
    $ans = 0;
 
    // Iterating two for loop,
    // one for i and another for j.
    for ($i = 0; $i < $n; $i++)
        for ($j = 0; $j < $n; $j++)
 
            // Evaluating |arr[i] -
            // arr[j]| + |i - j|
            // and compare with
            // previous maximum.
            $ans = max($ans, abs($arr[$i] -
                   $arr[$j]) + abs($i - $j));
 
    return $ans;
}
     
    // Driver Code
    $arr = array(1, 2, 3, 1);
    $n = count($arr);
 
    echo findValue($arr, $n);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// Javascript program to find maximum value of
// |arr[i] - arr[j]| + |i - j|
var MAX = 10;
 
// Return maximum value of
// |arr[i] - arr[j]| + |i - j|
function findValue(arr , n)
{
    var ans = 0;
 
    // Iterating two for loop,
    // one for i and another for j.
    for(var i = 0; i < n; i++)
        for(var j = 0; j < n; j++)
 
            // Evaluating |arr[i] - arr[j]|
            // + |i - j| and compare with
            // previous maximum.
            ans = Math.max(ans,
                           Math.abs(arr[i] - arr[j]) +
                           Math.abs(i - j));
                            
    return ans;
}
 
// Driver code
var arr = [ 1, 2, 3, 1 ];
var n = arr.length;
 
document.write(findValue(arr, n));
 
// This code is contributed by shikhasingrajput
 
</script>
Output
4

Method 2 (tricky): 

First of all lets make four equations by removing the absolute value signs (“|”). The following 4 equations will be formed, and we need to find the maximum value of these equations and that will be our answer. 

  1. arr[i] – arr[j] + i – j = (arr[i] + i) – (arr[j] + j)
  2. arr[i] – arr[j] – i + j = (arr[i] – i) – (arr[j] – j)
  3. -arr[i] + arr[j] + i – j = -(arr[i] – i) + (arr[j] – j)
  4. -arr[i] + arr[j] – i + j = -(arr[i] + i) + (arr[j] + j)

Observe the equations (1) and (4) are identical. Similarly, equations (2) and (3) are identical.
Now the task is to find the maximum value of these equations. So the approach is to form two arrays, first_array[], it will store arr[i] + i, 0 <= i < n, second_array[], it will store arr[i] – i, 0 <= i < n. 
Now our task is easy, we just need to find the maximum difference between the two values of these two arrays.
For that, we find the maximum value and minimum value in the first_array and store their difference: 
ans1 = (maximum value in first_array – minimum value in first_array) 
Similarly, we need to find the maximum value and minimum value in the second_array and store their difference: 
ans2 = (maximum value in second_array – minimum value in second_array) 
Our answer will be a maximum of ans1 and ans2.

Below is the implementation of the above approach: 

C++




// Efficient CPP program to find maximum value
// of |arr[i] - arr[j]| + |i - j|
#include <bits/stdc++.h>
using namespace std;
 
// Return maximum |arr[i] - arr[j]| + |i - j|
int findValue(int arr[], int n)
{
    int a[n], b[n], tmp;
 
    // Calculating first_array and second_array
    for (int i = 0; i < n; i++)
    {
        a[i] = (arr[i] + i);
        b[i] = (arr[i] - i);
    }
 
    int x = a[0], y = a[0];
 
    // Finding maximum and minimum value in
    // first_array
    for (int i = 0; i < n; i++)
    {
        if (a[i] > x)
            x = a[i];
 
        if (a[i] < y)
            y = a[i];
    }
 
    // Storing the difference between maximum and
    // minimum value in first_array
    int ans1 = (x - y);
 
    x = b[0];
    y = b[0];
 
    // Finding maximum and minimum value in
    // second_array
    for (int i = 0; i < n; i++)
    {
        if (b[i] > x)
            x = b[i];
 
        if (b[i] < y)
            y = b[i];
    }
 
    // Storing the difference between maximum and
    // minimum value in second_array
    int ans2 = (x - y);
 
    return max(ans1, ans2);
}
 
// Driven Code
int main()
{
    int arr[] = { 1, 2, 3, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findValue(arr, n) << endl;
 
    return 0;
}

Java




// Efficient Java program to find maximum
// value of |arr[i] - arr[j]| + |i - j|
import java.io.*;
class GFG {
 
    // Return maximum |arr[i] -
    // arr[j]| + |i - j|
    static int findValue(int arr[], int n)
    {
        int a[] = new int[n];
        int b[] = new int[n];
        int tmp;
 
        // Calculating first_array
        // and second_array
        for (int i = 0; i < n; i++)
        {
            a[i] = (arr[i] + i);
            b[i] = (arr[i] - i);
        }
 
        int x = a[0], y = a[0];
 
        // Finding maximum and
        // minimum value in
        // first_array
        for (int i = 0; i < n; i++)
        {
            if (a[i] > x)
                x = a[i];
 
            if (a[i] < y)
                y = a[i];
        }
 
        // Storing the difference
        // between maximum and
        // minimum value in first_array
        int ans1 = (x - y);
 
        x = b[0];
        y = b[0];
 
        // Finding maximum and
        // minimum value in
        // second_array
        for (int i = 0; i < n; i++)
        {
            if (b[i] > x)
                x = b[i];
 
            if (b[i] < y)
                y = b[i];
        }
 
        // Storing the difference
        // between maximum and
        // minimum value in second_array
        int ans2 = (x - y);
 
        return Math.max(ans1, ans2);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 3, 1 };
        int n = arr.length;
        System.out.println(findValue(arr, n));
    }
}
 
// This code is contributed by anuj_67.

Python3




# Efficient Python3 program
# to find maximum value
# of |arr[i] - arr[j]| + |i - j|
 
# Return maximum |arr[i] -
# arr[j]| + |i - j|
 
 
def findValue(arr, n):
    a = []
    b = []
 
    # Calculating first_array
    # and second_array
    for i in range(n):
        a.append(arr[i] + i)
        b.append(arr[i] - i)
 
    x = a[0]
    y = a[0]
 
    # Finding maximum and
    # minimum value in
    # first_array
    for i in range(n):
        if (a[i] > x):
            x = a[i]
 
        if (a[i] < y):
            y = a[i]
 
    # Storing the difference
    # between maximum and
    # minimum value in first_array
    ans1 = (x - y)
 
    x = b[0]
    y = b[0]
 
    # Finding maximum and
    # minimum value in
    # second_array
    for i in range(n):
        if (b[i] > x):
            x = b[i]
 
        if (b[i] < y):
            y = b[i]
 
    # Storing the difference
    # between maximum and
    # minimum value in
    # second_array
    ans2 = (x - y)
 
    return max(ans1, ans2)
 
 
# Driver Code
if __name__ == '__main__':
    arr = [1, 2, 3, 1]
    n = len(arr)
 
    print(findValue(arr, n))
 
# This code is contributed by mits

C#




// Efficient Java program to find maximum
// value of |arr[i] - arr[j]| + |i - j|
using System;
class GFG {
 
    // Return maximum |arr[i] -
    // arr[j]| + |i - j|
    static int findValue(int[] arr, int n)
    {
        int[] a = new int[n];
        int[] b = new int[n];
        // int tmp;
 
        // Calculating first_array
        // and second_array
        for (int i = 0; i < n; i++)
        {
            a[i] = (arr[i] + i);
            b[i] = (arr[i] - i);
        }
 
        int x = a[0], y = a[0];
 
        // Finding maximum and
        // minimum value in
        // first_array
        for (int i = 0; i < n; i++)
        {
            if (a[i] > x)
                x = a[i];
 
            if (a[i] < y)
                y = a[i];
        }
 
        // Storing the difference
        // between maximum and
        // minimum value in first_array
        int ans1 = (x - y);
 
        x = b[0];
        y = b[0];
 
        // Finding maximum and
        // minimum value in
        // second_array
        for (int i = 0; i < n; i++)
        {
            if (b[i] > x)
                x = b[i];
 
            if (b[i] < y)
                y = b[i];
        }
 
        // Storing the difference
        // between maximum and
        // minimum value in second_array
        int ans2 = (x - y);
 
        return Math.Max(ans1, ans2);
    }
 
    // Driver Code
    public static void Main()
    {
        int[] arr = { 1, 2, 3, 1 };
        int n = arr.Length;
        Console.WriteLine(findValue(arr, n));
    }
}
 
// This code is contributed by anuj_67.

PHP




<?php
// Efficient CPP program
// to find maximum value
// of |arr[i] - arr[j]| + |i - j|
 
// Return maximum |arr[i] -
// arr[j]| + |i - j|
function findValue($arr, $n)
{
    $a[] =array(); $b=array();$tmp;
 
    // Calculating first_array
    // and second_array
    for ($i = 0; $i < $n; $i++)
    {
        $a[$i] = ($arr[$i] + $i);
        $b[$i] = ($arr[$i] - $i);
    }
 
    $x = $a[0]; $y = $a[0];
 
    // Finding maximum and
    // minimum value in
    // first_array
    for ($i = 0; $i < $n; $i++)
    {
        if ($a[$i] > $x)
        $x = $a[$i];
 
        if ($a[$i] < $y)
            $y = $a[$i];
    }
 
    // Storing the difference
    // between maximum and
    // minimum value in first_array
    $ans1 = ($x - $y);
 
    $x = $b[0];
    $y = $b[0];
 
    // Finding maximum and
    // minimum value in
    // second_array
    for ($i = 0; $i < $n; $i++)
    {
        if ($b[$i] > $x)
            $x = $b[$i];
 
        if ($b[$i] < $y)
            $y = $b[$i];
    }
 
    // Storing the difference
    // between maximum and
    // minimum value in
    // second_array
    $ans2 = ($x -$y);
 
    return max($ans1, $ans2);
}
 
    // Driver Code
    $arr = array(1, 2, 3, 1);
    $n = count($arr);
 
    echo findValue($arr, $n);
     
// This code is contributed by anuj_67.
?>

Javascript




<script>
    // Efficient Javascript program to find maximum
    // value of |arr[i] - arr[j]| + |i - j|
     
    // Return maximum |arr[i] -
    // arr[j]| + |i - j|
    function findValue(arr, n)
    {
        let a = new Array(n);
        let b = new Array(n);
        // int tmp;
  
        // Calculating first_array
        // and second_array
        for (let i = 0; i < n; i++)
        {
            a[i] = (arr[i] + i);
            b[i] = (arr[i] - i);
        }
  
        let x = a[0], y = a[0];
  
        // Finding maximum and
        // minimum value in
        // first_array
        for (let i = 0; i < n; i++)
        {
            if (a[i] > x)
                x = a[i];
  
            if (a[i] < y)
                y = a[i];
        }
  
        // Storing the difference
        // between maximum and
        // minimum value in first_array
        let ans1 = (x - y);
  
        x = b[0];
        y = b[0];
  
        // Finding maximum and
        // minimum value in
        // second_array
        for (let i = 0; i < n; i++)
        {
            if (b[i] > x)
                x = b[i];
  
            if (b[i] < y)
                y = b[i];
        }
  
        // Storing the difference
        // between maximum and
        // minimum value in second_array
        let ans2 = (x - y);
  
        return Math.max(ans1, ans2);
    }
     
    let arr = [ 1, 2, 3, 1 ];
    let n = arr.length;
    document.write(findValue(arr, n));
     
</script>
Output
4

Method – 3

This solution is space optimization on above mentioned (method2) solution.
In Method 2 solution we had used two matrix of size n which laid to O(n) space complexity 
but here we only use O(1) space instead of that two n size array

C++




// Optimized CPP program to find maximum value of
// |arr[i] - arr[j]| + |i - j|
#include <bits/stdc++.h>
using namespace std;
 
// Return maximum |arr[i] - arr[j]| + |i - j|
int findValue(int arr[], int n)
{
    int temp1, temp2;
    int max1 = INT_MIN, max2 = INT_MIN;
    int min1 = INT_MAX, min2 = INT_MAX;
 
    // Calculating max1 , min1 and max2, min2
    for (int i = 0; i < n; i++) {
        temp1 = arr[i] + i;
        temp2 = arr[i] - i;
        max1 = max(max1, temp1);
        min1 = min(min1, temp1);
        max2 = max(max2, temp2);
        min2 = min(min2, temp2);
    }
 
    // required maximum ans is max of (max1-min1) and
    // (max2-min2)
    return max((max1 - min1), (max2 - min2));
}
 
// Driven Code
int main()
{
    int arr[] = { 1, 2, 3, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << findValue(arr, n) << endl;
 
    return 0;
}
 
// code by AJAY MAKVANA
Output
4

Time Complexity : O(N)

Auxiliary Space: O(1) 

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :