Skip to content
Related Articles

Related Articles

Maximum the value of a given expression for any pair of coordinates on a 2D plane
  • Last Updated : 06 May, 2021

Given a sorted 2D array arr[][2] of size N such that (arr[i][0], arr[i][1]) represents the coordinates of ith point in the cartesian plane and an integer K, the task is to find the maximum value of the expression (|arr[i][0] – arr[j][0]| + arr[i][1] + arr[j][1]) such that |arr[i][0] – arr[j][0]| ≤ K for any possible pair of coordinates (i, j).

Examples:

Input: arr[][] = {{1, 3}, {2, 0}, {5, 10}, {6, -10}}, K = 1
Output: 4
Explanation:
Choose pairs (0, 1). Now the value of the expression is given by:
value = (abs(1 – 2) + 3 + 0) = 4, which is maximum and abs(1 – 2) = 1(≤ K).
Therefore, print 4.

Input: arr[][] = {{0, 0}, {3, 0}, {9, 2}}, K = 3
Output: 3

Approach: The given problem can be solved using a Greedy Algorithm using the priority queue which is based on the following observations: 



  • Rearranging the expression for all i > j as (arr[i][0] – arr[i][1] + arr[j][0] + arr[j][1]).
  • Now, keeping the pair of {arr[i]x – arr[i]y, arr[i]x} in sorted order, the value of the given expression for every array element at index j can be calculated.

Follow the steps below to solve the problem:

  • Initialize a priority_queue of pairs say PQ that stores the pair of differences of coordinated axes of a point and X coordinate of that point.
  • Initialize a variable say res as INT_MIN to store the maximum value.
  • Traverse the array arr[][] and considering {X, Y} is the current point perform the following operations:
    • Iterate while PQ is not empty and (X – PQ.top()[1]) is greater than K and remove the top element from the priority_queue PQ.
    • If PQ is not empty then update the value of res as the maximum of res and PQ.top()[0] + X + Y).
    • Push the pair {Y – X, X} into the priority_queue PQ.
  • After completing the above steps, print the value of res as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum value
// of the given expression possible
// for any pair of co-ordinates
void findMaxValueOfEquation(
    vector<vector<int> >& arr, int K)
{
    // Stores the differences between pairs
    priority_queue<vector<int> > pq;
 
    // Stores the maximum value
    int res = INT_MIN;
 
    // Traverse the array arr[][]
    for (auto point : arr) {
 
        // While pq is not empty and
        // difference between point[0]
        // and pq.top()[1] > K
        while (!pq.empty()
               && point[0] - pq.top()[1]
                      > K) {
 
            // Removes the top element
            pq.pop();
        }
 
        // If pq is not empty
        if (!pq.empty()) {
 
            // Update the value res
            res = max(res,
                      pq.top()[0] + point[0] + point[1]);
        }
 
        // Push pair {point[1] - point[0],
        // point[0]} in pq
        pq.push({ point[1] - point[0],
                  point[0] });
    }
 
    // Print the result
    cout << res;
}
 
// Driver Code
int main()
{
    vector<vector<int> > arr
        = { { 1, 3 }, { 2, 0 },
            { 5, 10 }, { 6, -10 } };
    int K = 1;
    findMaxValueOfEquation(arr, K);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG
{
 
    // Function to find the maximum value
    // of the given expression possible
    // for any pair of co-ordinates
    static void findMaxValueOfEquation(int arr[][], int K)
    {
       
        // Stores the differences between pairs
        PriorityQueue<int[]> pq
            = new PriorityQueue<>((a, b) -> {
                  if (a[0] != b[0])
                      return b[0] - a[0];
                  return b[1] - a[1];
              });
 
        // Stores the maximum value
        int res = Integer.MIN_VALUE;
 
        // Traverse the array arr[][]
        for (int point[] : arr) {
 
            // While pq is not empty and
            // difference between point[0]
            // and pq.top()[1] > K
            while (!pq.isEmpty()
                   && point[0] - pq.peek()[1] > K) {
 
                // Removes the top element
                pq.poll();
            }
 
            // If pq is not empty
            if (!pq.isEmpty()) {
 
                // Update the value res
                res = Math.max(res, pq.peek()[0] + point[0]
                                        + point[1]);
            }
 
            // Push pair {point[1] - point[0],
            // point[0]} in pq
            pq.add(new int[] { point[1] - point[0],
                               point[0] });
        }
 
        // Print the result
        System.out.println(res);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        int[][] arr
            = { { 1, 3 }, { 2, 0 }, { 5, 10 }, { 6, -10 } };
        int K = 1;
        findMaxValueOfEquation(arr, K);
    }
}
 
// This code is contributed by Kingash.

Python3




# Python3 program for the above approach
 
# Function to find the maximum value
# of the given expression possible
# for any pair of co-ordinates
def findMaxValueOfEquation(arr, K):
   
    # Stores the differences between pairs
    pq = []
 
    # Stores the maximum value
    res = -10**8
 
    # Traverse the array arr[][]
    for point in arr:
 
        # While pq is not empty and
        # difference between point[0]
        # and pq.top()[1] > K
        while (len(pq)>0 and point[0] - pq[-1][1] > K):
           
            # Removes the top element
            del pq[-1]
 
        # If pq is not empty
        if (len(pq) > 0):
            # Update the value res
            res = max(res, pq[-1][0] + point[0] + point[1])
 
        # Push pair {point[1] - point[0],
        # point[0]} in pq
        pq.append([point[1] - point[0], point[0]])
        pq = sorted(pq)
 
    # Prthe result
    print (res)
 
# Driver Code
if __name__ == '__main__':
    arr = [ [ 1, 3 ], [ 2, 0 ], [ 5, 10 ], [ 6, -10 ] ]
    K = 1
    findMaxValueOfEquation(arr, K)
 
# This code is contributed by mohit kumar 29.
Output: 
4

 

Time Complexity: O(N * log N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :