Maximum sum from a tree with adjacent levels not allowed

Given a binary tree with positive integer values. Find the maximum sum of nodes such that we cannot pick two levels for computing sum

Examples:

Input : Tree
            1
           / \
          2   3
             /
            4
             \
              5
              /
             6
               
Output :11
Explanation: Total items we can take: {1, 4, 6} 
or {2, 3, 5}. Max sum = 11.

Input : Tree
             1
           /   \
          2     3
        /      /  \
      4       5     6
    /  \     /     /  
   17  18   19    30 
 /     /  \
11    12   13 
Output :89
Explanation: Total items we can take: {2, 3, 17, 18, 
19, 30} or {1, 4, 5, 6, 11, 12, 13}. 
Max sum from first set = 89.

Explanation: We know that we need to get item values from alternate tree levels. This means that if we pick from level 1, the next pick would be from level 3, then level 5 and so on. Similarly, if we start from level 2, next pick will be from level 4, then level 6 and so on. So, we actually need to recursively sum all the grandchildren of a particular element as those are guaranteed to be at the alternate level.



We know for any node of tree, there are 4 grandchildren of it.

    grandchild1 = root.left.left;
    grandchild2 = root.left.right;
    grandchild3 = root.right.left;
    grandchild4 = root.right.right;

We can recursively call the getSum() method in the below program to find the sum of these children and their grandchildren. At the end, we just need to return maximum sum obtained by starting at level 1 and starting at level 2.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ code for max sum with adjacent levels 
// not allowed 
#include<bits/stdc++.h> 
using namespace std;
  
    // Tree node class for Binary Tree 
    // representation 
    struct Node 
    
        int data; 
        Node* left, *right; 
        Node(int item) 
        
            data = item; 
        
    } ;
  
    int getSum(Node* root) ;
      
    // Recursive function to find the maximum 
    // sum returned for a root node and its 
    // grandchildren 
    int getSumAlternate(Node* root) 
    
        if (root == NULL) 
            return 0; 
  
        int sum = root->data; 
        if (root->left != NULL) 
        
            sum += getSum(root->left->left); 
            sum += getSum(root->left->right); 
        
  
        if (root->right != NULL) 
        
            sum += getSum(root->right->left); 
            sum += getSum(root->right->right); 
        
        return sum; 
    
  
    // Returns maximum sum with adjacent 
    // levels not allowed-> This function 
    // mainly uses getSumAlternate() 
    int getSum(Node* root) 
    
        if (root == NULL) 
            return 0; 
              
        // We compute sum of alternate levels 
        // starting first level and from second 
        // level-> 
        // And return maximum of two values-> 
        return max(getSumAlternate(root), 
                        (getSumAlternate(root->left) + 
                        getSumAlternate(root->right))); 
    
  
    // Driver function 
    int main()
    
        Node* root = new Node(1); 
        root->left = new Node(2); 
        root->right = new Node(3); 
        root->right->left = new Node(4); 
        root->right->left->right = new Node(5); 
        root->right->left->right->left = new Node(6); 
        cout << (getSum(root)); 
        return 0;
    }
      
// This code is contributed by Arnab Kundu

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code for max sum with adjacent levels
// not allowed
import java.util.*;
  
public class Main {
  
    // Tree node class for Binary Tree
    // representation
    static class Node {
        int data;
        Node left, right;
        Node(int item)
        {
            data = item;
            left = right = null;
        }
    }
  
    // Recursive function to find the maximum
    // sum returned for a root node and its
    // grandchildren
    public static int getSumAlternate(Node root)
    {
        if (root == null)
            return 0;
  
        int sum = root.data;
        if (root.left != null) {
            sum += getSum(root.left.left);
            sum += getSum(root.left.right);
        }
  
        if (root.right != null) {
            sum += getSum(root.right.left);
            sum += getSum(root.right.right);
        }
        return sum;
    }
  
    // Returns maximum sum with adjacent
    // levels not allowed. This function
    // mainly uses getSumAlternate()
    public static int getSum(Node root)
    {
        if (root == null)
            return 0;
  
        // We compute sum of alternate levels
        // starting first level and from second
        // level.
        // And return maximum of two values.
        return Math.max(getSumAlternate(root),
                        (getSumAlternate(root.left) +
                         getSumAlternate(root.right)));
    }
  
    // Driver function
    public static void main(String[] args)
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.right.left = new Node(4);
        root.right.left.right = new Node(5);
        root.right.left.right.left = new Node(6);
        System.out.println(getSum(root));
    }
}

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code for max sum with adjacent levels
// not allowed
using System;
  
class GFG
{
  
    // Tree node class for Binary Tree
    // representation
    public class Node
    {
        public int data;
        public Node left, right;
        public Node(int item)
        {
            data = item;
            left = right = null;
        }
    }
  
    // Recursive function to find the maximum
    // sum returned for a root node and its
    // grandchildren
    public static int getSumAlternate(Node root)
    {
        if (root == null)
            return 0;
  
        int sum = root.data;
        if (root.left != null)
        {
            sum += getSum(root.left.left);
            sum += getSum(root.left.right);
        }
  
        if (root.right != null
        {
            sum += getSum(root.right.left);
            sum += getSum(root.right.right);
        }
        return sum;
    }
  
    // Returns maximum sum with adjacent
    // levels not allowed. This function
    // mainly uses getSumAlternate()
    public static int getSum(Node root)
    {
        if (root == null)
            return 0;
  
        // We compute sum of alternate levels
        // starting first level and from second
        // level.
        // And return maximum of two values.
        return Math.Max(getSumAlternate(root),
                        (getSumAlternate(root.left) +
                        getSumAlternate(root.right)));
    }
  
    // Driver code
    public static void Main()
    {
        Node root = new Node(1);
        root.left = new Node(2);
        root.right = new Node(3);
        root.right.left = new Node(4);
        root.right.left.right = new Node(5);
        root.right.left.right.left = new Node(6);
        Console.WriteLine(getSum(root));
    }
}
  
/* This code contributed by PrinciRaj1992 */

chevron_right


Output:

11

Time Complexity : O(n)

Exercise: Try printing the same solution for a n-ary Tree rather than a binary tree. The trick lies in the representation of the tree.

This article is contributed by Ashish Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : princiraj1992, andrew1234



Article Tags :
Practice Tags :


3


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.