# Maximum sum such that no two elements are adjacent

• Difficulty Level : Medium
• Last Updated : 30 Nov, 2021

Given an array of positive numbers, find the maximum sum of a subsequence with the constraint that no 2 numbers in the sequence should be adjacent in the array. So 3 2 7 10 should return 13 (sum of 3 and 10) or 3 2 5 10 7 should return 15 (sum of 3, 5 and 7).Answer the question in most efficient way.

Examples :

Become a success story instead of just reading about them. Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includes topic-wise practice questions on all important DSA topics along with 10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today!

```Input : arr[] = {5, 5, 10, 100, 10, 5}
Output : 110

Input : arr[] = {1, 2, 3}
Output : 4

Input : arr[] = {1, 20, 3}
Output : 20```

Algorithm:
Loop for all elements in arr[] and maintain two sums incl and excl where incl = Max sum including the previous element and excl = Max sum excluding the previous element.
Max sum excluding the current element will be max(incl, excl) and max sum including the current element will be excl + current element (Note that only excl is considered because elements cannot be adjacent).
At the end of the loop return max of incl and excl.

Example:

```  arr[] = {5,  5, 10, 40, 50, 35}

incl = 5
excl = 0

For i = 1 (current element is 5)
incl =  (excl + arr[i])  = 5
excl =  max(5, 0) = 5

For i = 2 (current element is 10)
incl =  (excl + arr[i]) = 15
excl =  max(5, 5) = 5

For i = 3 (current element is 40)
incl = (excl + arr[i]) = 45
excl = max(5, 15) = 15

For i = 4 (current element is 50)
incl = (excl + arr[i]) = 65
excl =  max(45, 15) = 45

For i = 5 (current element is 35)
incl =  (excl + arr[i]) = 80
excl =  max(65, 45) = 65

And 35 is the last element. So, answer is max(incl, excl) =  80```

Thanks to Debanjan for providing code.

Implementation:

## C++

 `//c++ program for the above approach``#include ` `using` `namespace` `std;`  `/*Function to return max sum such that no two elements``  ``are adjacent */``int` `FindMaxSum(vector<``int``> arr, ``int` `n)``{``    ``int` `incl = arr;``    ``int` `excl = 0;``    ``int` `excl_new;``    ``int` `i;` `    ``for` `(i = 1; i < n; i++)``    ``{``        ``/* current max excluding i */``        ``excl_new = (incl > excl) ? incl : excl;` `        ``/* current max including i */``        ``incl = excl + arr[i];``        ``excl = excl_new;``    ``}` `    ``/* return max of incl and excl */``    ``return` `((incl > excl) ? incl : excl);``}` `// Driver program to test above functions``int` `main()``{``    ``vector<``int``> arr = {5, 5, 10, 100, 10, 5};``    ``cout<

## C

 `#include` `/*Function to return max sum such that no two elements``are adjacent */``int` `FindMaxSum(``int` `arr[], ``int` `n)``{``int` `incl = arr;``int` `excl = 0;``int` `excl_new;``int` `i;` `for` `(i = 1; i < n; i++)``{``    ``/* current max excluding i */``    ``excl_new = (incl > excl)? incl: excl;` `    ``/* current max including i */``    ``incl = excl + arr[i];``    ``excl = excl_new;``}` `/* return max of incl and excl */``return` `((incl > excl)? incl : excl);``}` `/* Driver program to test above function */``int` `main()``{``int` `arr[] = {5, 5, 10, 100, 10, 5};``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``printf``(``"%d n"``, FindMaxSum(arr, n));``return` `0;``}`

## Java

 `class` `MaximumSum``{``    ``/*Function to return max sum such that no two elements``      ``are adjacent */``    ``int` `FindMaxSum(``int` `arr[], ``int` `n)``    ``{``        ``int` `incl = arr[``0``];``        ``int` `excl = ``0``;``        ``int` `excl_new;``        ``int` `i;` `        ``for` `(i = ``1``; i < n; i++)``        ``{``            ``/* current max excluding i */``            ``excl_new = (incl > excl) ? incl : excl;` `            ``/* current max including i */``            ``incl = excl + arr[i];``            ``excl = excl_new;``        ``}` `        ``/* return max of incl and excl */``        ``return` `((incl > excl) ? incl : excl);``    ``}` `    ``// Driver program to test above functions``    ``public` `static` `void` `main(String[] args)``    ``{``        ``MaximumSum sum = ``new` `MaximumSum();``        ``int` `arr[] = ``new` `int``[]{``5``, ``5``, ``10``, ``100``, ``10``, ``5``};``        ``System.out.println(sum.FindMaxSum(arr, arr.length));``    ``}``}` `// This code has been contributed by Mayank Jaiswal`

## Python

 `# Function to return max sum such that``# no two elements are adjacent``def` `find_max_sum(arr):``    ``incl ``=` `0``    ``excl ``=` `0``   ` `    ``for` `i ``in` `arr:``        ` `        ``# Current max excluding i (No ternary in``        ``# Python)``        ``new_excl ``=` `excl ``if` `excl>incl ``else` `incl``       ` `        ``# Current max including i``        ``incl ``=` `excl ``+` `i``        ``excl ``=` `new_excl``    ` `    ``# return max of incl and excl``    ``return` `(excl ``if` `excl>incl ``else` `incl)` `# Driver program to test above function``arr ``=` `[``5``, ``5``, ``10``, ``100``, ``10``, ``5``]``print` `find_max_sum(arr)` `# This code is contributed by Kalai Selvan`

## C#

 `/* Program to return max sum such that no``two elements are adjacent */``using` `System;` `class` `GFG {``    ` `    ``/* Function to return max sum such``    ``that no two elements are adjacent */``    ``static` `int` `FindMaxSum(``int` `[]arr, ``int` `n)``    ``{``        ``int` `incl = arr;``        ``int` `excl = 0;``        ``int` `excl_new;``        ``int` `i;` `        ``for` `(i = 1; i < n; i++)``        ``{``            ``/* current max excluding i */``            ``excl_new = (incl > excl) ?``                            ``incl : excl;` `            ``/* current max including i */``            ``incl = excl + arr[i];``            ``excl = excl_new;``        ``}` `        ``/* return max of incl and excl */``        ``return` `((incl > excl) ?``                            ``incl : excl);``    ``}` `    ``// Driver program to test above``    ``// functions``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]arr = ``new` `int``[]{5, 5, 10,``                              ``100, 10, 5};``                              ` `        ``Console.Write(``             ``FindMaxSum(arr, arr.Length));``    ``}``}` `// This code has been contributed by``// nitin mittal`

## PHP

 ` ``\$excl``)? ``\$incl``: ``\$excl``;` `    ``// current max including i``    ``\$incl` `= ``\$excl` `+ ``\$arr``[``\$i``];``    ``\$excl` `= ``\$excl_new``;``}` `// return max of incl and excl``return` `((``\$incl` `> ``\$excl``)? ``\$incl` `: ``\$excl``);``}` `// Driver Code``\$arr` `= ``array``(5, 5, 10, 100, 10, 5);``\$n` `= sizeof(``\$arr``);``echo` `FindMaxSum(``\$arr``, ``\$n``);``    ` `// This code is contributed by Ajit``?>`

## Javascript

 ``

Output:

`110`

Time Complexity: O(n)

This Problem can also be solved using Dynamic Programming

Time Complexity : O(N)

Space Complexity:O(N)

## C++

 `#include` `using` `namespace` `std;`   `int` `FindMaxSum(vector<``int``>arr, ``int` `n)``    ``{``        ``vector<``int``>dp(n);``        ``if``(n==1)``        ``{``            ``return` `arr;``        ``}``        ``else` `if``(n==2)``        ``{``            ``return` `max(arr,arr);``            ` `        ``}``        ``else` `if``(n==3)``        ``{``            ``dp=arr;``            ``dp=arr;``            ``dp=arr+arr;``            ``return` `max(dp,dp);``        ``}``        ``else``        ``{``            ``dp=arr;``            ``dp=arr;``            ``dp=arr+arr;``            ``for``(``int` `i=3;i>t;` `        ``//taking number of houses``         ``vector<``int``> arr = {5, 5, 10, 100, 10, 5};``          ``int` `n=6;``        ` `        ` `        ` `        ``//calling function FindMaxSum()``        ``cout<

Refer Find maximum possible stolen value from houses for more explanation.
Now try the same problem for an array with negative numbers also.
Please write comments if you find any bug in the above program/algorithm or other ways to solve the same problem.

My Personal Notes arrow_drop_up