Maximum sum submatrix
Prerequisite: Kadane’s algorithm
Given a 2D array arr[][] of dimension N*M, the task is to find the maximum sum sub-matrix from the matrix arr[][].
Examples:
Input: arr[][] = {{0, -2, -7, 0 }, { 9, 2, -6, 2 }, { -4, 1, -4, 1 }, { -1, 8, 0, -2}}
Output: 15
Explanation: The submatrix {{9, 2}, {-4, 1}, {-1, 8}} has a sum 15, which is the maximum sum possible.Input: arr[][] = {{1, 2}, {-5, -7}}
Output: 3
Naive Approach: The simplest approach is to generate all possible submatrices from the given matrix and calculate their sum. Finally, print the maximum sum obtained.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find maximum sum submatrix void maxSubmatrixSum( vector<vector< int > > matrix) { // Stores the number of rows // and columns in the matrix int r = matrix.size(); int c = matrix[0].size(); // Stores maximum submatrix sum int maxSubmatrix = 0; // Take each row as starting row for ( int i = 0; i < r; i++) { // Take each column as the // starting column for ( int j = 0; j < c; j++) { // Take each row as the // ending row for ( int k = i; k < r; k++) { // Take each column as // the ending column for ( int l = j; l < c; l++) { // Stores the sum of submatrix // having topleft index(i, j) // and bottom right index (k, l) int sumSubmatrix = 0; // Iterate the submatrix // row-wise and calculate its sum for ( int m = i; m <= k; m++) { for ( int n = j; n <= l; n++) { sumSubmatrix += matrix[m][n]; } } // Update the maximum sum maxSubmatrix = max(maxSubmatrix, sumSubmatrix); } } } } // Print the answer cout << maxSubmatrix; } // Driver Code int main() { vector<vector< int > > matrix = { { 0, -2, -7, 0 }, { 9, 2, -6, 2 }, { -4, 1, -4, 1 }, { -1, 8, 0, -2 } }; maxSubmatrixSum(matrix); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to find maximum sum submatrix static void maxSubmatrixSum( int [][] matrix) { // Stores the number of rows // and columns in the matrix int r = matrix.length; int c = matrix[ 0 ].length; // Stores maximum submatrix sum int maxSubmatrix = 0 ; // Take each row as starting row for ( int i = 0 ; i < r; i++) { // Take each column as the // starting column for ( int j = 0 ; j < c; j++) { // Take each row as the // ending row for ( int k = i; k < r; k++) { // Take each column as // the ending column for ( int l = j; l < c; l++) { // Stores the sum of submatrix // having topleft index(i, j) // and bottom right index (k, l) int sumSubmatrix = 0 ; // Iterate the submatrix // row-wise and calculate its sum for ( int m = i; m <= k; m++) { for ( int n = j; n <= l; n++) { sumSubmatrix += matrix[m][n]; } } // Update the maximum sum maxSubmatrix = Math.max(maxSubmatrix, sumSubmatrix); } } } } // Print the answer System.out.println(maxSubmatrix); } // Driver Code public static void main(String[] args) { int [][] matrix = { { 0 , - 2 , - 7 , 0 }, { 9 , 2 , - 6 , 2 }, { - 4 , 1 , - 4 , 1 }, { - 1 , 8 , 0 , - 2 } }; maxSubmatrixSum(matrix); } } // This code is contributed by susmitakundugoaldanga. |
Python3
# Python3 program for the above approach # Function to find maximum sum submatrix def maxSubmatrixSum(matrix): # Stores the number of rows # and columns in the matrix r = len (matrix) c = len (matrix[ 0 ]) # Stores maximum submatrix sum maxSubmatrix = 0 # Take each row as starting row for i in range (r): # Take each column as the # starting column for j in range (c): # Take each row as the # ending row for k in range (i, r): # Take each column as # the ending column for l in range (j, c): # Stores the sum of submatrix # having topleft index(i, j) # and bottom right index (k, l) sumSubmatrix = 0 # Iterate the submatrix # row-wise and calculate its sum for m in range (i, k + 1 ): for n in range (j, l + 1 ): sumSubmatrix + = matrix[m][n] # Update the maximum sum maxSubmatrix = max (maxSubmatrix, sumSubmatrix) # Print the answer print (maxSubmatrix) # Driver Code if __name__ = = '__main__' : matrix = [ [ 0 , - 2 , - 7 , 0 ], [ 9 , 2 , - 6 , 2 ], [ - 4 , 1 , - 4 , 1 ], [ - 1 , 8 , 0 , - 2 ] ] maxSubmatrixSum(matrix) # This code is contributed by mohit kumar 29. |
C#
// C# program to implement // the above approach using System; public class GFG { // Function to find maximum sum submatrix static void maxSubmatrixSum( int [,] matrix) { // Stores the number of rows // and columns in the matrix int r = matrix.GetLength(0); int c = matrix.GetLength(1); // Stores maximum submatrix sum int maxSubmatrix = 0; // Take each row as starting row for ( int i = 0; i < r; i++) { // Take each column as the // starting column for ( int j = 0; j < c; j++) { // Take each row as the // ending row for ( int k = i; k < r; k++) { // Take each column as // the ending column for ( int l = j; l < c; l++) { // Stores the sum of submatrix // having topleft index(i, j) // and bottom right index (k, l) int sumSubmatrix = 0; // Iterate the submatrix // row-wise and calculate its sum for ( int m = i; m <= k; m++) { for ( int n = j; n <= l; n++) { sumSubmatrix += matrix[m, n]; } } // Update the maximum sum maxSubmatrix = Math.Max(maxSubmatrix, sumSubmatrix); } } } } // Print the answer Console.WriteLine(maxSubmatrix); } // Driver Code public static void Main(String []args) { int [,] matrix = { { 0, -2, -7, 0 }, { 9, 2, -6, 2 }, { -4, 1, -4, 1 }, { -1, 8, 0, -2 } }; maxSubmatrixSum(matrix); } } // This code is contributed by sanjoy_62. |
Javascript
<script> // Javascript program for the above approach // Function to find maximum sum submatrix function maxSubmatrixSum(matrix) { // Stores the number of rows // and columns in the matrix var r = matrix.length; var c = matrix[0].length; // Stores maximum submatrix sum var maxSubmatrix = 0; // Take each row as starting row for (i = 0; i < r; i++) { // Take each column as the // starting column for (j = 0; j < c; j++) { // Take each row as the // ending row for (k = i; k < r; k++) { // Take each column as // the ending column for (l = j; l < c; l++) { // Stores the sum of submatrix // having topleft index(i, j) // and bottom right index (k, l) var sumSubmatrix = 0; // Iterate the submatrix // row-wise and calculate its sum for (m = i; m <= k; m++) { for (n = j; n <= l; n++) { sumSubmatrix += matrix[m][n]; } } // Update the maximum sum maxSubmatrix = Math.max(maxSubmatrix, sumSubmatrix); } } } } // Print the answer document.write(maxSubmatrix); } // Driver Code var matrix = [ [ 0, -2, -7, 0 ], [ 9, 2, -6, 2 ], [ -4, 1, -4, 1 ], [ -1, 8, 0, -2 ] ]; maxSubmatrixSum(matrix); // This code contributed by umadevi9616 </script> |
15
Time Complexity: O(N6)
Auxiliary Space: O(1)
Efficient Approach using Kadane’s Algorithm: The above approach can be optimized using the following observations:
- Fix starting and ending column of the required sub-matrix say start and end respectively.
- Now, iterate each row and add row sum from starting to ending column to sumSubmatrix and insert this in an array. After iterating each row, perform Kadane’s Algorithm on this newly created array. If the sum obtained by applying Kadane’s algorithm is greater than the overall maximum sum, update the overall maximum sum.
- In the above step, the row sum from starting to ending column can be calculated in constant time by creating an auxiliary matrix of size N*M containing the prefix sum of each row.
Follow the steps below to solve the problem:
- Initialize a variable, say maxSum as INT_MIN, to store the maximum subarray sum.
- Create a matrix prefMatrix[N][M] that stores the prefix array sum of every row of the given matrix.
- Traverse the matrix row-wise using i as the row index and j as the column index and perform the following steps:
- If the value of i is 0, then set prefMatrix[i][j] = A[i][j].
- Otherwise, set prefMatrix[i][j] = prefMatrix[i][j – 1] + A[i][j].
- Now for all possible combinations of starting and ending index of the columns of submatrix over the range [0, M] perform the following steps:
- Initialize an auxiliary array A[] to stores the maximum sum for each row of the current submatrix.
- Find the sum from starting to ending column using prefMatrix as follows:
- If the value of start is positive, then store the required sum S as prefMatrix[i][end] – prefMatrix[i][start – 1].
- Otherwise, update S as prefMatrix[i][end].
- Insert S in an array arr[].
- After iterating all rows in the submatrix, perform Kadane’s algorithm on the array A[] and update the maximum sum maxSum as the maximum of maxSum and value obtained by performing the Kadane’s Algorithm in this step.
- After completing the above steps, print the value of maxSum as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find maximum continuous // maximum sum in the array int kadane(vector< int > v) { // Stores current and maximum sum int currSum = 0; int maxSum = INT_MIN; // Traverse the array v for ( int i = 0; i < ( int )v.size(); i++) { // Add the value of the // current element currSum += v[i]; // Update the maximum sum if (currSum > maxSum) { maxSum = currSum; } if (currSum < 0) { currSum = 0; } } // Return the maximum sum return maxSum; } // Function to find the maximum // submatrix sum void maxSubmatrixSum( vector<vector< int > > A) { // Store the rows and columns // of the matrix int r = A.size(); int c = A[0].size(); // Create an auxiliary matrix int ** prefix = new int *[r]; // Traverse the matrix, prefix // and initialize it will all 0s for ( int i = 0; i < r; i++) { prefix[i] = new int ; for ( int j = 0; j < c; j++) { prefix[i][j] = 0; } } // Calculate prefix sum of all // rows of matrix A[][] and // store in matrix prefix[] for ( int i = 0; i < r; i++) { for ( int j = 0; j < c; j++) { // Update the prefix[][] if (j == 0) prefix[i][j] = A[i][j]; else prefix[i][j] = A[i][j] + prefix[i][j - 1]; } } // Store the maximum submatrix sum int maxSum = INT_MIN; // Iterate for starting column for ( int i = 0; i < c; i++) { // Iterate for last column for ( int j = i; j < c; j++) { // To store current array // elements vector< int > v; // Traverse every row for ( int k = 0; k < r; k++) { // Store the sum of the // kth row int el = 0; // Update the prefix // sum if (i == 0) el = prefix[k][j]; else el = prefix[k][j] - prefix[k][i - 1]; // Push it in a vector v.push_back(el); } // Update the maximum // overall sum maxSum = max(maxSum, kadane(v)); } } // Print the answer cout << maxSum << "\n" ; } // Driver Code int main() { vector<vector< int > > matrix = { { 0, -2, -7, 0 }, { 9, 2, -6, 2 }, { -4, 1, -4, 1 }, { -1, 8, 0, -2 } }; // Function Call maxSubmatrixSum(matrix); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find maximum continuous // maximum sum in the array static int kadane(Vector<Integer> v) { // Stores current and maximum sum int currSum = 0 ; int maxSum = Integer.MIN_VALUE; // Traverse the array v for ( int i = 0 ; i < ( int )v.size(); i++) { // Add the value of the // current element currSum += v.get(i); // Update the maximum sum if (currSum > maxSum) { maxSum = currSum; } if (currSum < 0 ) { currSum = 0 ; } } // Return the maximum sum return maxSum; } // Function to find the maximum // submatrix sum static void maxSubmatrixSum( int [][]A) { // Store the rows and columns // of the matrix int r = A.length; int c = A[ 0 ].length; // Create an auxiliary matrix int [][]prefix = new int [r][]; // Traverse the matrix, prefix // and initialize it will all 0s for ( int i = 0 ; i < r; i++) { prefix[i] = new int ; for ( int j = 0 ; j < c; j++) { prefix[i][j] = 0 ; } } // Calculate prefix sum of all // rows of matrix A[][] and // store in matrix prefix[] for ( int i = 0 ; i < r; i++) { for ( int j = 0 ; j < c; j++) { // Update the prefix[][] if (j == 0 ) prefix[i][j] = A[i][j]; else prefix[i][j] = A[i][j] + prefix[i][j - 1 ]; } } // Store the maximum submatrix sum int maxSum = Integer.MIN_VALUE; // Iterate for starting column for ( int i = 0 ; i < c; i++) { // Iterate for last column for ( int j = i; j < c; j++) { // To store current array // elements Vector<Integer> v = new Vector<Integer>(); // Traverse every row for ( int k = 0 ; k < r; k++) { // Store the sum of the // kth row int el = 0 ; // Update the prefix // sum if (i == 0 ) el = prefix[k][j]; else el = prefix[k][j] - prefix[k][i - 1 ]; // Push it in a vector v.add(el); } // Update the maximum // overall sum maxSum = Math.max(maxSum, kadane(v)); } } // Print the answer System.out.print(maxSum+ "\n" ); } // Driver Code public static void main(String[] args) { int [][]matrix = { { 0 , - 2 , - 7 , 0 }, { 9 , 2 , - 6 , 2 }, { - 4 , 1 , - 4 , 1 }, { - 1 , 8 , 0 , - 2 } }; // Function Call maxSubmatrixSum(matrix); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program for the above approach import sys # Function to find maximum continuous # maximum sum in the array def kadane(v): # Stores current and maximum sum currSum = 0 maxSum = - sys.maxsize - 1 # Traverse the array v for i in range ( len (v)): # Add the value of the # current element currSum + = v[i] # Update the maximum sum if (currSum > maxSum): maxSum = currSum if (currSum < 0 ): currSum = 0 # Return the maximum sum return maxSum # Function to find the maximum # submatrix sum def maxSubmatrixSum(A): # Store the rows and columns # of the matrix r = len (A) c = len (A[ 0 ]) # Create an auxiliary matrix # Traverse the matrix, prefix # and initialize it will all 0s prefix = [[ 0 for i in range (c)] for j in range (r)] # Calculate prefix sum of all # rows of matrix A[][] and # store in matrix prefix[] for i in range (r): for j in range (c): # Update the prefix[][] if (j = = 0 ): prefix[i][j] = A[i][j] else : prefix[i][j] = A[i][j] + prefix[i][j - 1 ] # Store the maximum submatrix sum maxSum = - sys.maxsize - 1 # Iterate for starting column for i in range (c): # Iterate for last column for j in range (i, c): # To store current array # elements v = [] # Traverse every row for k in range (r): # Store the sum of the # kth row el = 0 # Update the prefix # sum if (i = = 0 ): el = prefix[k][j] else : el = prefix[k][j] - prefix[k][i - 1 ] # Push it in a vector v.append(el) # Update the maximum # overall sum maxSum = max (maxSum, kadane(v)) # Print the answer print (maxSum) # Driver Code matrix = [ [ 0 , - 2 , - 7 , 0 ], [ 9 , 2 , - 6 , 2 ], [ - 4 , 1 , - 4 , 1 ], [ - 1 , 8 , 0 , - 2 ] ] # Function Call maxSubmatrixSum(matrix) # This code is contributed by rag2127 |
C#
// C# program for the above approach using System; using System.Collections.Generic; public class GFG{ // Function to find maximum continuous // maximum sum in the array static int kadane(List< int > v) { // Stores current and maximum sum int currSum = 0; int maxSum = int .MinValue; // Traverse the array v for ( int i = 0; i < ( int )v.Count; i++) { // Add the value of the // current element currSum += v[i]; // Update the maximum sum if (currSum > maxSum) { maxSum = currSum; } if (currSum < 0) { currSum = 0; } } // Return the maximum sum return maxSum; } // Function to find the maximum // submatrix sum static void maxSubmatrixSum( int [,]A) { // Store the rows and columns // of the matrix int r = A.GetLength(0); int c = A.GetLength(1); // Create an auxiliary matrix int [,]prefix = new int [r,c]; // Traverse the matrix, prefix // and initialize it will all 0s for ( int i = 0; i < r; i++) { for ( int j = 0; j < c; j++) { prefix[i,j] = 0; } } // Calculate prefix sum of all // rows of matrix [,]A and // store in matrix prefix[] for ( int i = 0; i < r; i++) { for ( int j = 0; j < c; j++) { // Update the prefix[,] if (j == 0) prefix[i,j] = A[i,j]; else prefix[i,j] = A[i,j] + prefix[i,j - 1]; } } // Store the maximum submatrix sum int maxSum = int .MinValue; // Iterate for starting column for ( int i = 0; i < c; i++) { // Iterate for last column for ( int j = i; j < c; j++) { // To store current array // elements List< int > v = new List< int >(); // Traverse every row for ( int k = 0; k < r; k++) { // Store the sum of the // kth row int el = 0; // Update the prefix // sum if (i == 0) el = prefix[k,j]; else el = prefix[k,j] - prefix[k,i - 1]; // Push it in a vector v.Add(el); } // Update the maximum // overall sum maxSum = Math.Max(maxSum, kadane(v)); } } // Print the answer Console.Write(maxSum+ "\n" ); } // Driver Code public static void Main(String[] args) { int [,]matrix = { { 0, -2, -7, 0 }, { 9, 2, -6, 2 }, { -4, 1, -4, 1 }, { -1, 8, 0, -2 } }; // Function Call maxSubmatrixSum(matrix); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program for the above approach // Function to find maximum continuous // maximum sum in the array function kadane(v) { // Stores current and maximum sum let currSum = 0; let maxSum = Number.MIN_VALUE; // Traverse the array v for (let i = 0; i < v.length; i++) { // Add the value of the // current element currSum += v[i]; // Update the maximum sum if (currSum > maxSum) { maxSum = currSum; } if (currSum < 0) { currSum = 0; } } // Return the maximum sum return maxSum; } // Function to find the maximum // submatrix sum function maxSubmatrixSum(A) { // Store the rows and columns // of the matrix let r = A.length; let c = A[0].length; // Create an auxiliary matrix let prefix = new Array(r); // Traverse the matrix, prefix // and initialize it will all 0s for (let i = 0; i < r; i++) { prefix[i] = new Array(c); for (let j = 0; j < c; j++) { prefix[i][j] = 0; } } // Calculate prefix sum of all // rows of matrix A[][] and // store in matrix prefix[] for (let i = 0; i < r; i++) { for (let j = 0; j < c; j++) { // Update the prefix[][] if (j == 0) prefix[i][j] = A[i][j]; else prefix[i][j] = A[i][j] + prefix[i][j - 1]; } } // Store the maximum submatrix sum let maxSum = Number.MIN_VALUE; // Iterate for starting column for (let i = 0; i < c; i++) { // Iterate for last column for (let j = i; j < c; j++) { // To store current array // elements let v = []; // Traverse every row for (let k = 0; k < r; k++) { // Store the sum of the // kth row let el = 0; // Update the prefix // sum if (i == 0) el = prefix[k][j]; else el = prefix[k][j] - prefix[k][i - 1]; // Push it in a vector v.push(el); } // Update the maximum // overall sum maxSum = Math.max(maxSum, kadane(v)); } } // Print the answer document.write(maxSum+ "<br>" ); } // Driver Code let matrix=[[ 0, -2, -7, 0 ], [ 9, 2, -6, 2 ], [ -4, 1, -4, 1 ], [ -1, 8, 0, -2 ]]; // Function Call maxSubmatrixSum(matrix); // This code is contributed by unknown2108 </script> |
15
Time Complexity: O(N3)
Auxiliary Space: O(N2)
Related Topic: Subarrays, Subsequences, and Subsets in Array
Please Login to comment...