Given an array arr[] and two integers K and X, the task is to find the maximum sum among all subarrays of size K with the sum less than X.
Examples:
Input: arr[] = {20, 2, 3, 10, 5}, K = 3, X = 20
Output: 18
Explanation: Subarray of size 3 having maximum sum less than 20 is {3, 10, 5}. Therefore, required output is 18.
Input: arr[] = {-5, 8, 7, 2, 10, 1, 20, -4, 6, 9}, K = 5, X = 30
Output: 29
Explanation: Subarray of size 5having maximum sum less than 30 is {2, 10, 1, 20, -4}. Therefore, required output is 29.
Naive Approach: The simplest approach to solve the problem is to generate all subarrays of size K and check if its sum is less than X or not. Print the maximum sum obtained among all such subarrays.
Time Complexity: O(N * K)
Auxiliary Space: O(1)
Efficient Approach: Follow the steps below to solve the problem using Sliding Window technique:
- Initialize a variable sum_K to store the sum of first K array elements.
- If sum_K is less than X, then initialize Max_Sum with sum_K.
- Traverse the array from (K + 1)th index and perform the following:
- In each iteration, subtract the first element of the previous K length subarray and add the current element to sum_K.
- If sum_K is less than X, then compare sum_K with Max_Sum and update Max_Sum accordingly.
- Finally, print Max_Sum.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void maxSumSubarr( int A[], int N,
int K, int X)
{
int sum_K = 0;
for ( int i = 0; i < K; i++) {
sum_K += A[i];
}
int Max_Sum = 0;
if (sum_K < X) {
Max_Sum = sum_K;
}
for ( int i = K; i < N; i++) {
sum_K -= (A[i - K] - A[i]);
if (sum_K < X) {
Max_Sum = max(Max_Sum, sum_K);
}
}
cout << Max_Sum << endl;
}
int main()
{
int arr[] = { -5, 8, 7, 2, 10,
1, 20, -4, 6, 9 };
int K = 5;
int X = 30;
int N = sizeof (arr)
/ sizeof (arr[0]);
maxSumSubarr(arr, N, K, X);
return 0;
}
|
Java
import java.io.*;
class GFG{
private static void maxSumSubarr( int A[], int N,
int K, int X)
{
int sum_K = 0 ;
for ( int i = 0 ; i < K; i++)
{
sum_K += A[i];
}
int Max_Sum = 0 ;
if (sum_K < X)
{
Max_Sum = sum_K;
}
for ( int i = K; i < N; i++)
{
sum_K -= (A[i - K] - A[i]);
if (sum_K < X)
{
Max_Sum = Math.max(Max_Sum, sum_K);
}
}
System.out.println(Max_Sum);
}
public static void main (String[] args)
{
int arr[] = { - 5 , 8 , 7 , 2 , 10 ,
1 , 20 , - 4 , 6 , 9 };
int K = 5 ;
int X = 30 ;
int N = arr.length;
maxSumSubarr(arr, N, K, X);
}
}
|
Python3
def maxSumSubarr(A, N, K, X):
sum_K = 0
for i in range ( 0 , K):
sum_K + = A[i]
Max_Sum = 0
if (sum_K < X):
Max_Sum = sum_K
for i in range (K, N):
sum_K - = (A[i - K] - A[i])
if (sum_K < X):
Max_Sum = max (Max_Sum, sum_K)
print (Max_Sum)
arr = [ - 5 , 8 , 7 , 2 , 10 ,
1 , 20 , - 4 , 6 , 9 ]
K = 5
X = 30
N = len (arr)
maxSumSubarr(arr, N, K, X)
|
C#
using System;
class GFG{
private static void maxSumSubarr( int []A, int N,
int K, int X)
{
int sum_K = 0;
for ( int i = 0; i < K; i++)
{
sum_K += A[i];
}
int Max_Sum = 0;
if (sum_K < X)
{
Max_Sum = sum_K;
}
for ( int i = K; i < N; i++)
{
sum_K -= (A[i - K] - A[i]);
if (sum_K < X)
{
Max_Sum = Math.Max(Max_Sum, sum_K);
}
}
Console.WriteLine(Max_Sum);
}
public static void Main(String[] args)
{
int []arr = { -5, 8, 7, 2, 10,
1, 20, -4, 6, 9 };
int K = 5;
int X = 30;
int N = arr.Length;
maxSumSubarr(arr, N, K, X);
}
}
|
Javascript
<script>
function maxSumSubarr(A, N, K, X)
{
let sum_K = 0;
for (let i = 0; i < K; i++) {
sum_K += A[i];
}
let Max_Sum = 0;
if (sum_K < X) {
Max_Sum = sum_K;
}
for (let i = K; i < N; i++) {
sum_K -= (A[i - K] - A[i]);
if (sum_K < X) {
Max_Sum = Math.max(Max_Sum, sum_K);
}
}
document.write(Max_Sum);
}
let arr = [ -5, 8, 7, 2, 10,
1, 20, -4, 6, 9 ];
let K = 5;
let X = 30;
let N = arr.length;
maxSumSubarr(arr, N, K, X);
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 Mar, 2021
Like Article
Save Article