Skip to content
Related Articles

Related Articles

Maximum sum of pairs that are at least K distance apart in an array

View Discussion
Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 20 Jul, 2022
View Discussion
Improve Article
Save Article

Given an array arr[] consisting of N integers and an integer K, the task is to find the maximum sum of pairs of elements that are separated by at least K indices.

Examples:

Input: arr[] = {2, 4, 1, 6, 8}, K = 2
Output: 12
Explanation:
The elements {1, 4} are K(= 2) distance apart. The sum of pairs {4, 8} is 4 + 8 = 12, which is maximum.

Input: arr[] = {1, 2, 3}, K = 1
Output: 4

Naive Approach: The simplest approach to solve the given problem is to generate all possible pairs of the given array which are K distant apart and print the maximum sum among all possible pairs formed.

Time Complexity: O(N2)
Auxiliary Space: O(1),  since no extra space has been taken.

Efficient Approach: The above approach can be optimized by precomputing the prefix maximums for each array element. Follow the steps below to solve the given problem:

  • Initialize a variable, say res as INT_MIN, that stores the maximum sum of valid pairs which are K distant apart in the given array.
  • Initialize an array, say preMax[], that stores the maximum value array element up to each index i.
  • Initialize preMax[0] equal to arr[0].
  • Traverse the array over the range [1, N – 1] and update the value of preMax[i] to the maximum of preMax[i – 1] and arr[i].
  • Now, iterate over the range [K, N – 1], and for each index i, update the value of res as the maximum of res and (arr[i] + preMax[i – K]).
  • After completing the above steps, print the value of res as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the largest sum
// pair that are K distant apart
int getMaxPairSum(int arr[], int N,
                  int K)
{
    // Stores the prefix maximum array
    int preMax[N];
 
    // Base Case
    preMax[0] = arr[0];
 
    // Traverse the array and update
    // the maximum value upto index i
    for (int i = 1; i < N; i++) {
        preMax[i] = max(preMax[i - 1],
                        arr[i]);
    }
 
    // Stores the maximum sum of pairs
    int res = INT_MIN;
 
    // Iterate over the range [K, N]
    for (int i = K; i < N; i++) {
        // Find the maximum value of
        // the sum of valid pairs
        res = max(res, arr[i]
                           + preMax[i - K]);
    }
 
    // Return the resultant sum
    return res;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 4, 8, 6, 3 };
    int K = 3;
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << getMaxPairSum(arr, N, K);
 
    return 0;
}

Java




// java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
public class GFG {
 
    // Function to find the largest sum
    // pair that are K distant apart
    static int getMaxPairSum(int[] arr, int N, int K)
    {
 
        // Stores the prefix maximum array
        int[] preMax = new int[N];
 
        // Base Case
        preMax[0] = arr[0];
 
        // Traverse the array and update
        // the maximum value upto index i
        for (int i = 1; i < N; i++) {
            preMax[i] = Math.max(preMax[i - 1], arr[i]);
        }
 
        // Stores the maximum sum of pairs
        int res = Integer.MIN_VALUE;
 
        // Iterate over the range [K, N]
        for (int i = K; i < N; i++) {
 
            // Find the maximum value of
            // the sum of valid pairs
            res = Math.max(res, arr[i] + preMax[i - K]);
        }
 
        // Return the resultant sum
        return res;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        int[] arr = { 1, 2, 4, 8, 6, 3 };
        int K = 3;
        int N = arr.length;
        System.out.print(getMaxPairSum(arr, N, K));
    }
}
 
// This code is contributed by Kingash

Python3




# Python3` program for the above approach
 
# Function to find the largest sum
# pair that are K distant apart
def getMaxPairSum(arr, N, K):
   
    # Stores the prefix maximum array
    preMax = [0]*N
 
    # Base Case
    preMax[0] = arr[0]
 
    # Traverse the array and update
    # the maximum value upto index i
    for i in range(1, N):
        preMax[i] = max(preMax[i - 1], arr[i])
 
    # Stores the maximum sum of pairs
    res = -10**8
 
    # Iterate over the range [K, N]
    for i in range(K, N):
       
        # Find the maximum value of
        # the sum of valid pairs
        res = max(res, arr[i] + preMax[i - K])
 
    # Return the resultant sum
    return res
 
# Driver Code
if __name__ == '__main__':
    arr = [1, 2, 4, 8, 6, 3]
    K = 3
    N = len(arr)
    print (getMaxPairSum(arr, N, K))
 
# This code is contributed by mohit kumar 29.

C#




// C# program for the above approach
using System;
class GFG {
 
    // Function to find the largest sum
    // pair that are K distant apart
    static int getMaxPairSum(int[] arr, int N, int K)
    {
       
        // Stores the prefix maximum array
        int[] preMax = new int[N];
 
        // Base Case
        preMax[0] = arr[0];
 
        // Traverse the array and update
        // the maximum value upto index i
        for (int i = 1; i < N; i++) {
            preMax[i] = Math.Max(preMax[i - 1], arr[i]);
        }
 
        // Stores the maximum sum of pairs
        int res = Int32.MinValue;
 
        // Iterate over the range [K, N]
        for (int i = K; i < N; i++)
        {
           
            // Find the maximum value of
            // the sum of valid pairs
            res = Math.Max(res, arr[i] + preMax[i - K]);
        }
 
        // Return the resultant sum
        return res;
    }
 
    // Driver Code
    public static void Main()
    {
        int[] arr = { 1, 2, 4, 8, 6, 3 };
        int K = 3;
        int N = arr.Length;
        Console.Write(getMaxPairSum(arr, N, K));
    }
}
 
// This code is contributed by ukasp.

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the largest sum
// pair that are K distant apart
function getMaxPairSum(arr, N, K)
{
    // Stores the prefix maximum array
    var preMax = Array(N);
 
    // Base Case
    preMax[0] = arr[0];
 
    // Traverse the array and update
    // the maximum value upto index i
    for (var i = 1; i < N; i++) {
        preMax[i] = Math.max(preMax[i - 1],
                        arr[i]);
    }
 
    // Stores the maximum sum of pairs
    var res = -1000000000;
 
    // Iterate over the range [K, N]
    for (var i = K; i < N; i++) {
        // Find the maximum value of
        // the sum of valid pairs
        res = Math.max(res, arr[i]
                           + preMax[i - K]);
    }
 
    // Return the resultant sum
    return res;
}
 
// Driver Code
var arr = [1, 2, 4, 8, 6, 3];
var K = 3;
var N = arr.length;
document.write( getMaxPairSum(arr, N, K));
 
</script>

Output: 

9

 

Time Complexity: O(N)
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!