Maximum sum of absolute differences between distinct pairs of a triplet from an array
Given an array arr[] consisting of N integers, the task is to find the maximum sum of absolute differences between all distinct pairs of the triplet in the array.
Examples:
Input: arr[] = {1, 2, 3, 4}
Output: 6
Explanation:
The valid triplet is (1, 3, 4) as sum = |1 – 4| + |1 – 3| + |3 – 4| = 6, which is the maximum among all the triplets.Input: arr[] = {2, 2, 2}
Output: 0
Approach: The idea to solve the given problem is to sort the array in ascending order and find the sum of absolute differences between the pairs of the first and the last two elements of the array. Follow the steps below to solve the problem:
- Initialize a variable, say sum, to store the maximum possible sum.
- Sort the given array arr[] in ascending order.
- Find the sum of differences between the pairs of the first and the last two elements of the array i.e., sum = (arr[N – 2] – arr[0]) + (arr[N – 1] – arr[0]) + (arr[N – 2] – arr[N – 1]).
- After completing the above steps, print the value of the sum as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum sum of // absolute differences between // distinct pairs of triplet in array void maximumSum( int arr[], int N) { // Stores the maximum sum int sum; // Sort the array in // ascending order sort(arr, arr + N); // Sum of differences between // pairs of the triplet sum = (arr[N - 1] - arr[0]) + (arr[N - 2] - arr[0]) + (arr[N - 1] - arr[N - 2]); // Print the sum cout << sum; } // Driver Code int main() { int arr[] = { 1, 3, 4, 2 }; int N = sizeof (arr) / sizeof (arr[0]); maximumSum(arr, N); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to find the maximum sum of // absolute differences between // distinct pairs of triplet in array static void maximumSum( int [] arr, int N) { // Stores the maximum sum int sum; // Sort the array in // ascending order Arrays.sort(arr); // Sum of differences between // pairs of the triplet sum = (arr[N - 1 ] - arr[ 0 ]) + (arr[N - 2 ] - arr[ 0 ]) + (arr[N - 1 ] - arr[N - 2 ]); // Print the sum System.out.println(sum); } // Driver Code public static void main(String[] args) { int [] arr = { 1 , 3 , 4 , 2 }; int N = arr.length; maximumSum(arr, N); } } // This code is contributed by susmitakundugoaldanga. |
Python3
# Python program for the above approach # Function to find the maximum sum of # absolute differences between # distinct pairs of triplet in array def maximumSum(arr, N): # Stores the maximum sum sum = 0 # Sort the array in # ascending order arr.sort() # Sum of differences between # pairs of the triplet sum = (arr[N - 1 ] - arr[ 0 ]) + (arr[N - 2 ] - arr[ 0 ]) + (arr[N - 1 ] - arr[N - 2 ]); # Print the sum print ( sum ) # Driver Code arr = [ 1 , 3 , 4 , 2 ] N = len (arr) maximumSum(arr, N) # This code is contributed by rohitsingh07052. |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to find the maximum sum of // absolute differences between // distinct pairs of triplet in array static void maximumSum( int [] arr, int N) { // Stores the maximum sum int sum; // Sort the array in // ascending order Array.Sort(arr); // Sum of differences between // pairs of the triplet sum = (arr[N - 1] - arr[0]) + (arr[N - 2] - arr[0]) + (arr[N - 1] - arr[N - 2]); // Print the sum Console.Write(sum); } // Driver Code public static void Main() { int [] arr = { 1, 3, 4, 2 }; int N = arr.Length; maximumSum(arr, N); } } // This code is contributed by chitranayal. |
Javascript
<script> // Javascript program for the above approach // Function to find the maximum sum of // absolute differences between // distinct pairs of triplet in array function maximumSum(arr, N) { // Stores the maximum sum let sum; // Sort the array in // ascending order arr.sort(); // Sum of differences between // pairs of the triplet sum = (arr[N - 1] - arr[0]) + (arr[N - 2] - arr[0]) + (arr[N - 1] - arr[N - 2]); // Print the sum document.write(sum); } // Driver Code let arr = [ 1, 3, 4, 2 ]; let N = arr.length; maximumSum(arr, N); // This code is contributed by Mayank Tyagi </script> |
Output:
6
Time Complexity: O(N*log N)
Auxiliary Space: O(1)
Please Login to comment...