Maximum sum of hour glass in matrix

Given a 2D matrix, the task is that we find maximum sum of a hour glass.

An hour glass is made of 7 cells
in following form.
    A B C
      D
    E F G

Examples:

Input : 1 1 1 0 0 
        0 1 0 0 0 
        1 1 1 0 0 
        0 0 0 0 0 
        0 0 0 0 0 
Output : 7
Below is the hour glass with
maximum sum:
1 1 1 
  1
1 1 1
                                                      
Input : 0 3 0 0 0
        0 1 0 0 0
        1 1 1 0 0
        0 0 2 4 4
        0 0 0 2 4
Output : 11
Below is the hour glass wuth
maximum sum
1 0 0
  4
0 2 4

It is evident from definition of hour glass that number of rows and number of columns must be equal to 3. If we count total number of hour glasses in a matrix, we can say that the count is equal to count of possible top left cells in hour glass. Number of top-left cells in a hour glass is equal to (R-2)*(C-2). Therefore, in a matrix total number of hour glass is (R-2)*(C-2)

mat[][] = 2 3 0 0 0 
          0 1 0 0 0
          1 1 1 0 0 
          0 0 2 4 4
          0 0 0 2 0
Possible hour glass are :
2 3 0  3 0 0   0 0 0  
  1      0       0 
1 1 1  1 1 0   1 0 0 

0 1 0  1 0 0  0 0 0 
  1      1      0  
0 0 2  0 2 4  2 4 4 

1 1 1  1 1 0  1 0 0
  0      2      4
0 0 0  0 0 2  0 2 0

We consider all top left cells of hour glasses one by one. For every cell, we compute sum of hour glass formed by it. Finally we return maximum sum.

Below is the implementation of above idea :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum sum of hour
// glass in matrix
#include<bits/stdc++.h>
using namespace std;
const int R = 5;
const int C = 5;
  
// Returns maximum sum of hour glass in ar[][]
int findMaxSum(int mat[R][C])
{
    if (R<3 || C<3)
        return -1;
  
    // Here loop runs (R-2)*(C-2) times considering
    // different top left cells of hour glasses.
    int max_sum = INT_MIN;
    for (int i=0; i<R-2; i++)
    {
        for (int j=0; j<C-2; j++)
        {
            // Considering mat[i][j] as top left cell of
            // hour glass.
            int sum = (mat[i][j]+mat[i][j+1]+mat[i][j+2])+
                      (mat[i+1][j+1])+
                  (mat[i+2][j]+mat[i+2][j+1]+mat[i+2][j+2]);
  
            // If previous sum is less then current sum then
            // update new sum in max_sum
            max_sum = max(max_sum, sum);
        }
    }
    return max_sum;
}
  
// Driver code
int main()
{
    int mat[][C] = {{1, 2, 3, 0, 0},
                    {0, 0, 0, 0, 0},
                    {2, 1, 4, 0, 0},
                    {0, 0, 0, 0, 0},
                    {1, 1, 0, 1, 0}};
    int res = findMaxSum(mat);
    if (res == -1)
        cout << "Not possible" << endl;
    else
        cout << "Maximum sum of hour glass = "
             << res << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum 
// sum of hour glass in matrix
import java.io.*;
  
class GFG {
      
static int R = 5;
static int C = 5;
  
// Returns maximum sum of 
// hour glass in ar[][]
static int findMaxSum(int [][]mat)
{
    if (R < 3 || C < 3)
        return -1;
  
    // Here loop runs (R-2)*(C-2) 
    // times considering different
    // top left cells of hour glasses.
    int max_sum = Integer.MIN_VALUE;
    for (int i = 0; i < R - 2; i++)
    {
        for (int j = 0; j < C - 2; j++)
        {
            // Considering mat[i][j] as top 
            // left cell of hour glass.
            int sum = (mat[i][j] + mat[i][j + 1] + 
                       mat[i][j + 2]) + (mat[i + 1][j + 1]) + 
                       (mat[i + 2][j] + mat[i + 2][j + 1] + 
                       mat[i + 2][j + 2]);
  
            // If previous sum is less then 
            // current sum then update
            // new sum in max_sum
            max_sum = Math.max(max_sum, sum);
        }
    }
    return max_sum;
}
  
    // Driver code
    static public void main (String[] args)
    {
        int [][]mat = {{1, 2, 3, 0, 0},
                       {0, 0, 0, 0, 0},
                       {2, 1, 4, 0, 0},
                       {0, 0, 0, 0, 0},
                       {1, 1, 0, 1, 0}};
        int res = findMaxSum(mat);
        if (res == -1)
            System.out.println("Not possible");
        else
            System.out.println("Maximum sum of hour glass = "
                                + res);
    }
      
}
  
// This code is contributed by vt_m .

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find maximum 
// sum of hour glass in matrix
using System;
  
class GFG {
      
static int R = 5;
static int C = 5;
  
// Returns maximum sum of 
// hour glass in ar[][]
static int findMaxSum(int [,]mat)
{
    if (R < 3 || C < 3)
        return -1;
  
    // Here loop runs (R-2)*(C-2) 
    // times considering different
    // top left cells of hour glasses.
    int max_sum = int.MinValue;
    for (int i = 0; i < R - 2; i++)
    {
        for (int j = 0; j < C - 2; j++)
        {
            // Considering mat[i][j] as top 
            // left cell of hour glass.
            int sum = (mat[i, j] + mat[i, j + 1] + 
                       mat[i, j + 2]) + (mat[i + 1, j + 1]) + 
                      (mat[i + 2, j] + mat[i + 2, j + 1] + 
                       mat[i + 2, j + 2]);
  
            // If previous sum is less then 
            // current sum then update
            // new sum in max_sum
            max_sum = Math.Max(max_sum, sum);
        }
    }
    return max_sum;
}
  
    // Driver code
    static public void Main(String[] args)
    {
        int [,]mat = {{1, 2, 3, 0, 0},
                       {0, 0, 0, 0, 0},
                       {2, 1, 4, 0, 0},
                       {0, 0, 0, 0, 0},
                       {1, 1, 0, 1, 0}};
        int res = findMaxSum(mat);
        if (res == -1)
            Console.WriteLine("Not possible");
        else
            Console.WriteLine("Maximum sum of hour glass = "
                               + res);
    }
      
}
  
// This code is contributed by vt_m .

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find maximum sum 
// of hour glass in matrix
$R = 5;
$C = 5;
  
// Returns maximum sum 
// of hour glass in ar[][]
function findMaxSum($mat)
{
    global $R; global $C;
    if ($R < 3 || $C < 3)
        return -1;
  
    // Here loop runs (R-2)*(C-2) times considering
    // different top left cells of hour glasses.
    $max_sum = PHP_INT_MIN;
    for ($i = 0; $i < ($R - 2); $i++)
    {
        for ($j = 0; $j < ($C - 2); $j++)
        {
            // Considering mat[i][j] as 
            // top left cell of hour glass.
            $sum = ($mat[$i][$j] + $mat[$i][$j + 1] + 
                    $mat[$i][$j + 2]) + 
                   ($mat[$i + 1][$j + 1]) +
                   ($mat[$i + 2][$j] + 
                    $mat[$i + 2][$j + 1] + 
                    $mat[$i + 2][$j + 2]);
  
            // If previous sum is less than current sum 
            // then update new sum in max_sum
            $max_sum = max($max_sum, $sum);
        }
    }
    return $max_sum;
}
  
// Driver code
$mat = array(array(1, 2, 3, 0, 0),
             array(0, 0, 0, 0, 0),
             array(2, 1, 4, 0, 0),
             array(0, 0, 0, 0, 0),
             array(1, 1, 0, 1, 0));
$res = findMaxSum($mat);
if ($res == -1)
    echo "Not possible", "\n";
else
    echo "Maximum sum of hour glass = ",
         $res, "\n";
  
// This code is contributed by ajit.
?>

chevron_right



Output:

Maximum sum of hour glass = 13

Reference :
http://stackoverflow.com/questions/38019861/hourglass-sum-in-2d-array

This article is contributed by DANISH_RAZA . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : vt_m, jit_t, SrinivasaLakkaraju



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.