Skip to content
Related Articles

Related Articles

Maximum sum after K consecutive deletions

Improve Article
Save Article
  • Difficulty Level : Expert
  • Last Updated : 24 Oct, 2022
Improve Article
Save Article

Given an array arr[] of size N and an integer K, the task is to delete K continuous elements from the array such that the sum of the remaining element is maximum. Here we need to print the remaining elements of the array. 

Examples:  

Input: arr[] = {-1, 1, 2, -3, 2, 2}, K = 3 
Output: -1 2 2 
Delete 1, 2, -3 and the sum of the remaining 
elements will be 3 which is maximum possible.

Input: arr[] = {1, 2, -3, 4, 5}, K = 1 
Output: 1 2 4 5  

Approach: Calculate the sum of k-consecutive elements and remove the elements with the minimum sum. Print the rest of the elements of the array.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the array after removing
// k consecutive elements such that the sum
// of the remaining elements is maximized
void maxSumArr(int arr[], int n, int k)
{
    int cur = 0, index = 0;
 
    // Find the sum of first k elements
    for (int i = 0; i < k; i++)
        cur += arr[i];
 
    // To store the minimum sum of k
    // consecutive elements of the array
    int min = cur;
    for (int i = 0; i < n - k; i++) {
 
        // Calculating sum of next k elements
        cur = cur - arr[i] + arr[i + k];
 
        // Update the minimum sum so far and the
        // index of the first element
        if (cur < min) {
            cur = min;
            index = i + 1;
        }
    }
 
    // Printing result
    for (int i = 0; i < index; i++)
        cout << arr[i] << " ";
    for (int i = index + k; i < n; i++)
        cout << arr[i] << " ";
}
 
// Driver code
int main()
{
    int arr[] = { -1, 1, 2, -3, 2, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
 
    maxSumArr(arr, n, k);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG {
 
    // Function to print the array after removing
    // k consecutive elements such that the sum
    // of the remaining elements is maximized
    static void maxSumArr(int arr[], int n, int k)
    {
        int cur = 0, index = 0;
 
        // Find the sum of first k elements
        for (int i = 0; i < k; i++)
            cur += arr[i];
 
        // To store the minimum sum of k
        // consecutive elements of the array
        int min = cur;
        for (int i = 0; i < n - k; i++) {
 
            // Calculating sum of next k elements
            cur = cur - arr[i] + arr[i + k];
 
            // Update the minimum sum so far and the
            // index of the first element
            if (cur < min) {
                cur = min;
                index = i + 1;
            }
        }
 
        // Printing result
        for (int i = 0; i < index; i++)
            System.out.print(arr[i] + " ");
        for (int i = index + k; i < n; i++)
            System.out.print(arr[i] + " ");
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { -1, 1, 2, -3, 2, 2 };
        int n = arr.length;
        int k = 3;
 
        maxSumArr(arr, n, k);
    }
}

Python




# Python3 implementation of the approach
 
# Function to print the array after removing
# k consecutive elements such that the sum
# of the remaining elements is maximized
 
 
def maxSumArr(arr,  n, k):
    cur = 0
    index = 0
 
    # Find the sum of first k elements
    for i in range(k):
        cur += arr[i]
 
    # To store the minimum sum of k
    # consecutive elements of the array
    min = cur
    for i in range(n-k):
 
        # Calculating sum of next k elements
        cur = cur-arr[i]+arr[i + k]
 
        # Update the minimum sum so far and the
        # index of the first element
        if(cur < min):
            cur = min
            index = i + 1
 
    # Printing result
    for i in range(index):
        print(arr[i], end=" ")
    i = index + k
    while i < n:
        print(arr[i], end=" ")
        i += 1
 
 
# Driver code
arr = [-1, 1, 2, -3, 2, 2]
n = len(arr)
k = 3
 
maxSumArr(arr, n, k)

C#




// C# implementation of the above approach
using System;
 
class GFG {
 
    // Function to print the array after removing
    // k consecutive elements such that the sum
    // of the remaining elements is maximized
    static void maxSumArr(int[] arr, int n, int k)
    {
        int cur = 0, index = 0;
 
        // Find the sum of first k elements
        for (int i = 0; i < k; i++)
            cur = cur + arr[i];
 
        // To store the minimum sum of k
        // consecutive elements of the array
        int min = cur;
        for (int i = 0; i < n - k; i++) {
 
            // Calculating sum of next k elements
            cur = (cur - arr[i]) + (arr[i + k]);
 
            // Update the minimum sum so far and the
            // index of the first element
            if (cur < min) {
                cur = min;
                index = i + 1;
            }
        }
 
        // Printing result
        for (int i = 0; i < index; i++)
            Console.Write(arr[i] + " ");
        for (int i = index + k; i < n; i++)
            Console.Write(arr[i] + " ");
    }
 
    // Driver code
    static public void Main()
    {
        int[] arr = { -1, 1, 2, -3, 2, 2 };
        int n = arr.Length;
        int k = 3;
 
        maxSumArr(arr, n, k);
    }
}
 
// This code is contributed by ajit..

Javascript




<script>
    // Javascript implementation of the above approach
     
    // Function to print the array after removing
    // k consecutive elements such that the sum
    // of the remaining elements is maximized
    function maxSumArr(arr, n, k)
    {
        let cur = 0, index = 0;
   
        // Find the sum of first k elements
        for (let i = 0; i < k; i++)
            cur = cur + arr[i];
   
        // To store the minimum sum of k
        // consecutive elements of the array
        let min = cur;
        for (let i = 0; i < n - k; i++)
        {
   
            // Calculating sum of next k elements
            cur = (cur - arr[i]) + (arr[i + k]);
   
            // Update the minimum sum so far and the
            // index of the first element
            if (cur < min)
            {
                cur = min;
                index = i + 1;
            }
        }
   
        // Printing result
        for (let i = 0; i < index; i++)
            document.write(arr[i] + " ");
        for (let i = index + k; i < n; i++)
            document.write(arr[i] + " ");
    }
     
    let arr = [ -1, 1, 2, -3, 2, 2 ];
    let n = arr.length;
    let k = 3;
 
    maxSumArr(arr, n, k);
 
</script>

Output: 

-1 2 2

 

Time Complexity: O(n)
Auxiliary space: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!