Maximum sum after K consecutive deletions

Given an array arr[] of size N and an integer K, the task is to delete K continuous elements from the array such that the sum of the remaining element is maximum. Here we need to print remaining elements of array.

Examples:

Input: arr[] = {-1, 1, 2, -3, 2, 2}, K = 3
Output: -1 2 2
Delete 1, 2, -3 and the sum of the remaining
elements will be 3 which is maximum possible.



Input: arr[] = {1, 2, -3, 4, 5}, K = 1
Output: 1 2 4 5

Approach: Calculate the sum of k-consecutive elements and remove the elements with the minimum sum. Print the rest of the elements of the array.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the array after removing
// k consecutive elements such that the sum
// of the remaining elements is maximized
void maxSumArr(int arr[], int n, int k)
{
    int cur = 0, index = 0;
  
    // Find the sum of first k elements
    for (int i = 0; i < k; i++)
        cur += arr[i];
  
    // To store the minimum sum of k
    // consecutive elements of the array
    int min = cur;
    for (int i = 0; i < n - k; i++) {
  
        // Calculating sum of next k elements
        cur = cur - arr[i] + arr[i + k];
  
        // Update the minimum sum so far and the
        // index of the first element
        if (cur < min) {
            cur = min;
            index = i + 1;
        }
    }
  
    // Printing result
    for (int i = 0; i < index; i++)
        cout << arr[i] << " ";
    for (int i = index + k; i < n; i++)
        cout << arr[i] << " ";
}
  
// Driver code
int main()
{
    int arr[] = { -1, 1, 2, -3, 2, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
  
    maxSumArr(arr, n, k);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to print the array after removing
    // k consecutive elements such that the sum
    // of the remaining elements is maximized
    static void maxSumArr(int arr[], int n, int k)
    {
        int cur = 0, index = 0;
  
        // Find the sum of first k elements
        for (int i = 0; i < k; i++)
            cur += arr[i];
  
        // To store the minimum sum of k
        // consecutive elements of the array
        int min = cur;
        for (int i = 0; i < n - k; i++) {
  
            // Calculating sum of next k elements
            cur = cur - arr[i] + arr[i + k];
  
            // Update the minimum sum so far and the
            // index of the first element
            if (cur < min) {
                cur = min;
                index = i + 1;
            }
        }
  
        // Printing result
        for (int i = 0; i < index; i++)
            System.out.print(arr[i] + " ");
        for (int i = index + k; i < n; i++)
            System.out.print(arr[i] + " ");
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { -1, 1, 2, -3, 2, 2 };
        int n = arr.length;
        int k = 3;
  
        maxSumArr(arr, n, k);
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Pyhton3 implementation of the approach
  
# Function to print the array after removing 
# k consecutive elements such that the sum 
# of the remaining elements is maximized
def maxSumArr(arr,  n, k):
    cur = 0
    index = 0
  
    # Find the sum of first k elements
    for i in range(k):
        cur += arr[i]
  
    # To store the minimum sum of k 
    # consecutive elements of the array
    min = cur;
    for i in range(n-k):
  
        # Calculating sum of next k elements 
        cur = cur-arr[i]+arr[i + k]
          
        # Update the minimum sum so far and the 
        # index of the first element
        if(cur<min):
            cur = min
            index = i + 1
  
    # Printing result
    for i in range(index):
        print(arr[i], end =" ")
    i = index + k
    while i<n:
        print(arr[i], end =" ")
        i += 1
  
# Driver code
arr = [-1, 1, 2, -3, 2, 2]
n = len(arr)
k = 3
  
maxSumArr(arr, n, k)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
  
class GFG
{
      
    // Function to print the array after removing
    // k consecutive elements such that the sum
    // of the remaining elements is maximized
    static void maxSumArr(int []arr, int n, int k)
    {
        int cur = 0, index = 0;
  
        // Find the sum of first k elements
        for (int i = 0; i < k; i++)
            cur = cur + arr[i];
  
        // To store the minimum sum of k
        // consecutive elements of the array
        int min = cur;
        for (int i = 0; i < n - k; i++)
        {
  
            // Calculating sum of next k elements
            cur = (cur - arr[i]) + (arr[i + k]);
  
            // Update the minimum sum so far and the
            // index of the first element
            if (cur < min) 
            {
                cur = min;
                index = i + 1;
            }
        }
  
        // Printing result
        for (int i = 0; i < index; i++)
            Console.Write(arr[i] + " ");
        for (int i = index + k; i < n; i++)
            Console.Write(arr[i] + " ");
    }
  
    // Driver code
    static public void Main ()
    {
        int []arr = { -1, 1, 2, -3, 2, 2 };
        int n = arr.Length;
        int k = 3;
  
        maxSumArr(arr, n, k);
    }
}
  
// This code is contributed by ajit.. 

chevron_right


Output:

-1 2 2

Time Complexity: O(n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.