Maximum String Partition

Given a string. The task is to find the maximum number P, such that given string can be partitioned into P contiguous substrings such that any two adjacent substring must be different. More formally S = S_{1}S_{2}....S_{P} and S_{i} \ne S_{i + 1}(0 \leq i \leq P - 1).

Examples:

Input: str = “aabccd”
Output: 4
Explanation:
We can divide the given string into four string, like “a”, “ab”, “c”, “cd”. We can not divide
it more than four parts, if we do then the condition S_{i} \ne S_{i + 1}(0 \leq i \leq P - 1) will not
satisfy



Input: str = “aaaa”
Output: 3

Approach:

  • Here we only have to focus on the value of P, not upon finding those P substrings.
  • We will solve it greedily, we always check the current string that we have with the previous string that has been taken already.
  • If we found that both of them are same then we will go forward otherwise create a partition here and change the previous track of the string to current string, means we will treat this current string as the previous string for future comparison.

Below is the implementation of above Approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Return the count of string
int maxPartition(string s)
{
    // P will store the answer
    int n = s.length(), P = 0;
  
    // Current will store current string
    // Previous will store the previous
    // string that has been taken already
    string current = "", previous = "";
  
    for (int i = 0; i < n; i++) {
  
        // Add a character to current string
        current += s[i];
  
        if (current != previous) {
  
            // Here we will create a partition and
            // update the previous string with
            // current string
            previous = current;
  
            // Now we will clear the current string
            current.clear();
  
            // Increment the count of partition.
            P++;
        }
    }
  
    return P;
}
  
// Driver code
int main()
{
  
    string s = "geeksforgeeks";
  
    int ans = maxPartition(s);
  
    cout << ans << "\n";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG
{
// Return the count of string
static int maxPartition(String s)
{
    // P will store the answer
    int n = s.length(), P = 0;
  
    // Current will store current string
    // Previous will store the previous
    // string that has been taken already
    String current = "", previous = "";
  
    for (int i = 0; i < n; i++) 
    {
  
        // Add a character to current string
        current += s.charAt(i);
  
        if (!current.equals(previous)) 
        {
  
            // Here we will create a partition and
            // update the previous string with
            // current string
            previous = current;
  
            // Now we will clear the current string
            current = "";
  
            // Increment the count of partition.
            P++;
        }
    }
    return P;
}
  
// Driver code
public static void main (String[] args) 
{
    String s = "geeksforgeeks";
  
    int ans = maxPartition(s);
  
    System.out.println(ans);
}
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
  
# Return the count of string
def maxPartition(s):
      
    # P will store the answer
    n = len(s)
    P = 0
  
    # Current will store current string
    # Previous will store the previous
    # that has been taken already
    current = ""
    previous = ""
  
    for i in range(n):
  
        # Add a character to current string
        current += s[i]
  
        if (current != previous):
  
            # Here we will create a partition and
            # update the previous with
            # current string
            previous = current
  
            # Now we will clear the current string
            current = ""
  
            # Increment the count of partition.
            P += 1
  
    return P
  
# Driver code
s = "geeksforgeeks"
  
ans = maxPartition(s)
  
print(ans)
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
class GFG
{
// Return the count of string
static int maxPartition(string s)
{
    // P will store the answer
    int n = s.Length, P = 0;
  
    // Current will store current string
    // Previous will store the previous
    // string that has been taken already
    string current = "", previous = "";
  
    for (int i = 0; i < n; i++)
    {
  
        // Add a character to current string
        current += s[i];
  
        if (!current.Equals(previous))
        {
  
            // Here we will create a partition and
            // update the previous string with
            // current string
            previous = current;
  
            // Now we will clear the current string
            current = "";
  
            // Increment the count of partition.
            P++;
        }
    }
    return P;
}
  
// Driver code
public static void Main () 
{
    string s = "geeksforgeeks";
  
    int ans = maxPartition(s);
  
    Console.WriteLine(ans);
}
}
  
// This code is contributed by ihritik

chevron_right


Output:

11

Time Complexity: O(N), where N is the length of the string.



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : mohit kumar 29, ihritik