# Maximum strength in a Matrix after performing specified operations

• Difficulty Level : Expert
• Last Updated : 07 Jun, 2021

Given a matrix of N * M containing {0, 1, #}. The task is to find the maximum value of strength based on following rules:

1. Initial strength is zero.
2. If you encounter a 0, Strength decreases by 2.
3. If you encounter a 1, Strength increases by 5.
4. If you encounter a #, Jumps to the start of a new row without losing any strength.

Note: You have to traverse every row of the matrix in top-down order from left to right.
Example:

Attention reader! All those who say programming isn't for kids, just haven't met the right mentors yet. Join the  Demo Class for First Step to Coding Coursespecifically designed for students of class 8 to 12.

The students will get to learn more about the world of programming in these free classes which will definitely help them in making a wise career choice in the future.

```Input:
{{1, 0, 1, 0},
{0, #, 0, 0},
{1, 1, 0, 0},
{0, #, 1, 0}}

Output: 14
Explanation:
Here you starts with strength S = 0.

For the first row {1, 0, 1, 0}:
After {1} -> S = S + 5 = 5
After {0} -> S = S - 2 = 3
After {1} -> S = S + 5 = 8
After {0} -> S = S - 2 = 6

For the Second row {0, #, 0, 0}:
After {0} -> S = S - 2 = 4

For the Third row {1, 1, 0, 0}:
After {1} -> S = S + 5 = 9
After {1} -> S = S + 5 = 14
After {0} -> S = S - 2 = 12
After {0} -> S = S - 2 = 10

For the Fourth row {0, #, 1, 0}:
After {0} -> S = S - 2 = 8

So, The maximum value of S is 14 ```

Approach:

1. Traverse the matrix mat[][] from i = [0, N], j = [0, M] and check:

```If mat[i][j] = 0 then, S = S - 2.
If mat[i][j] = 1 then, S = S + 5.
1.
2. At every step store maximum value of strength till now and Print the strength at the end.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach` `#include ``using` `namespace` `std;` `// Function return the Maximum``// value of the strength``void` `MaxStrength(``char` `mat,``                 ``int` `n, ``int` `m)``{``    ``int` `S = 0;``    ``int` `ans = 0;` `    ``for` `(``int` `i = 0; i < n; i++) {``        ``for` `(``int` `j = 0; j < m; j++) {` `            ``char` `Curr = mat[i][j];` `            ``// If current element``            ``// is 1``            ``if` `(Curr == ``'1'``) {``                ``S += 5;``            ``}``            ``// If current element``            ``// is 0``            ``if` `(Curr == ``'0'``) {``                ``S -= 2;``            ``}``            ``// If current element``            ``// is '#'``            ``if` `(Curr == ``'#'``) {``                ``break``;``            ``}` `            ``// Store the value of``            ``// maximum strength``            ``// till now``            ``ans = max(ans, S);``        ``}``    ``}` `    ``cout << ans;` `    ``return``;``}` `// Driver code``int` `main()``{``    ``int` `N = 4;``    ``int` `M = 4;``    ``char` `Mat{ { ``'1'``, ``'0'``, ``'1'``, ``'0'` `},``                        ``{ ``'0'``, ``'#'``, ``'0'``, ``'0'` `},``                        ``{ ``'1'``, ``'1'``, ``'0'``, ``'0'` `},``                        ``{ ``'0'``, ``'#'``, ``'1'``, ``'0'` `} };` `    ``MaxStrength(Mat, N, M);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.io.*;` `class` `GFG{` `// Function return the maximum``// value of the strength``static` `void` `MaxStrength(``char``[][] mat,``                        ``int` `n, ``int` `m)``{``    ``int` `S = ``0``;``    ``int` `ans = ``0``;` `    ``for``(``int` `i = ``0``; i < n; i++)``    ``{``       ``for``(``int` `j = ``0``; j < m; j++)``       ``{``          ``char` `Curr = mat[i][j];``          ` `          ``// If current element``          ``// is 1``          ``if` `(Curr == ``'1'``)``          ``{``              ``S += ``5``;``          ``}``          ` `          ``// If current element``          ``// is 0``          ``if` `(Curr == ``'0'``)``          ``{``              ``S -= ``2``;``          ``}``          ` `          ``// If current element``          ``// is '#'``          ``if` `(Curr == ``'#'``)``          ``{``              ``break``;``          ``}``          ` `          ``// Store the value of``          ``// maximum strength``          ``// till now``          ``ans = Math.max(ans, S);``       ``}``    ``}``    ``System.out.println(ans);``    ``return``;``}` `// Driver code``public` `static` `void` `main (String[] args)``{``    ``int` `N = ``4``;``    ``int` `M = ``4``;``    ``char``[][] Mat = { { ``'1'``, ``'0'``, ``'1'``, ``'0'` `},``                     ``{ ``'0'``, ``'#'``, ``'0'``, ``'0'` `},``                     ``{ ``'1'``, ``'1'``, ``'0'``, ``'0'` `},``                     ``{ ``'0'``, ``'#'``, ``'1'``, ``'0'` `} };` `    ``MaxStrength(Mat, N, M);``}``}` `// This code is contributed by shubhamsingh10`

## Python3

 `# python3 program for the above approach` `# Function return the Maximum``# value of the strength``def` `MaxStrength(mat, n, m):``    ``S ``=` `0``    ``ans ``=` `0` `    ``for` `i ``in` `range``(n):``        ``for` `j ``in` `range``(m):``            ``Curr ``=` `mat[i][j]` `            ``# If current element``            ``# is 1``            ``if` `(Curr ``=``=` `'1'``):``                ``S ``+``=` `5``                ` `            ``# If current element``            ``# is 0``            ``if` `(Curr ``=``=` `'0'``):``                ``S ``-``=` `2``                ` `            ``# If current element``            ``# is '#'``            ``if` `(Curr ``=``=` `'#'``):``                ``break` `            ``# Store the value of``            ``# maximum strength``            ``# till now``            ``ans ``=` `max``(ans, S)` `    ``print``(ans)``    ``return` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``N ``=` `4``;``    ``M ``=` `4``;``    ``Mat ``=` `[ [``'1'``, ``'0'``, ``'1'``, ``'0'``],``            ``[``'0'``, ``'#'``, ``'0'``, ``'0'``],``            ``[``'1'``, ``'1'``, ``'0'``, ``'0'``],``            ``[``'0'``, ``'#'``, ``'1'``, ``'0'``] ]``            ` `    ``MaxStrength(Mat, N, M)` `# This code is contributed by Samarth`

## C#

 `// C# program for the above approach``using` `System;` `class` `GFG{` `// Function return the maximum``// value of the strength``static` `void` `MaxStrength(``char``[,] mat,``                        ``int` `n, ``int` `m)``{``    ``int` `S = 0;``    ``int` `ans = 0;` `    ``for``(``int` `i = 0; i < n; i++)``    ``{``       ``for``(``int` `j = 0; j < m; j++)``       ``{``          ``char` `Curr = mat[i, j];``          ` `          ``// If current element``          ``// is 1``          ``if` `(Curr == ``'1'``)``          ``{``              ``S += 5;``          ``}``          ` `          ``// If current element``          ``// is 0``          ``if` `(Curr == ``'0'``)``          ``{``              ``S -= 2;``          ``}``          ` `          ``// If current element``          ``// is '#'``          ``if` `(Curr == ``'#'``)``          ``{``              ``break``;``          ``}``          ` `          ``// Store the value of``          ``// maximum strength``          ``// till now``          ``ans = Math.Max(ans, S);``       ``}``    ``}``    ``Console.WriteLine(ans);``    ``return``;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int` `N = 4;``    ``int` `M = 4;``    ``char``[,] Mat = { { ``'1'``, ``'0'``, ``'1'``, ``'0'` `},``                    ``{ ``'0'``, ``'#'``, ``'0'``, ``'0'` `},``                    ``{ ``'1'``, ``'1'``, ``'0'``, ``'0'` `},``                    ``{ ``'0'``, ``'#'``, ``'1'``, ``'0'` `} };` `    ``MaxStrength(Mat, N, M);``}``}` `// This code is contributed by sapnasingh4991`

## Javascript

 ``
Output:
`14`

My Personal Notes arrow_drop_up