Given a Matrix arr[][] of size M x N having positive integers and a number K, the task is to find the size of the largest square sub-matrix whose sum of elements is less than or equals to K.
Example:
Input:
arr[][] = { { 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 } },
K = 4
Output:
2
Explanation:
Maximum size square Sub-Matrix
with sum less than or equals to 4
1 1
1 1
Size is 2.
Input:
arr[][] = { { 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 } },
K = 22
Output:
3
Explanation:
Maximum size square Sub-Matrix
with sum less than or equals to 22
1 1 3
1 1 3
1 1 3
Size is 3.
Approach:
- For the given matrix arr[][] create a prefix sum matrix(say sum[][]) such that sum[i][j] stores the sum of all the elements of the matrix of size i x j.
- For each row in prefix sum matrix sum[][] using Binary Search do the following:
- Perform Binary search with the lower limit as 0 end the upper limit as to maximum size of square matrix.
- Find the middle index (say mid).
- If the sum of elements of all possible square matrix of size mid is less than or equals to K, then update the lower limit as mid + 1 to find the maximum sum with size greater than mid.
- Else Update the upper limit as mid – 1 to find the maximum sum with size less than mid.
- Keep updating the maximum size of square matrix in each iteration for the given valid condition above.
Below is the implementation of the above approach:
Java
import java.util.*;
class GFG {
static void findMaxMatrixSize( int [][] arr, int K)
{
int i, j;
int n = arr.length;
int m = arr[ 0 ].length;
int [][] sum = new int [n + 1 ][m + 1 ];
for (i = 0 ; i <= n; i++) {
for (j = 0 ; j <= m; j++) {
if (i == 0 || j == 0 ) {
sum[i][j] = 0 ;
continue ;
}
sum[i][j] = arr[i - 1 ][j - 1 ]
+ sum[i - 1 ][j] + sum[i][j - 1 ]
- sum[i - 1 ][j - 1 ];
}
}
int ans = 0 ;
for (i = 1 ; i <= n; i++) {
for (j = 1 ; j <= m; j++) {
if (i + ans - 1 > n || j + ans - 1 > m)
break ;
int mid, lo = ans;
int hi = Math.min(n - i + 1 , m - j + 1 );
while (lo < hi) {
mid = (hi + lo + 1 ) / 2 ;
if (sum[i + mid - 1 ][j + mid - 1 ]
+ sum[i - 1 ][j - 1 ]
- sum[i + mid - 1 ][j - 1 ]
- sum[i - 1 ][j + mid - 1 ]
<= K) {
lo = mid;
}
else {
hi = mid - 1 ;
}
}
ans = Math.max(ans, lo);
}
}
System.out.print(ans + "\n" );
}
public static void main(String[] args)
{
int [][] arr = { { 1 , 1 , 3 , 2 , 4 , 3 , 2 },
{ 1 , 1 , 3 , 2 , 4 , 3 , 2 },
{ 1 , 1 , 3 , 2 , 4 , 3 , 2 } };
int K = 4 ;
findMaxMatrixSize(arr, K);
}
}
|
Python3
def findMaxMatrixSize(arr, K):
n = len (arr)
m = len (arr[ 0 ])
sum = [[ 0 for i in range (m + 1 )] for j in range (n + 1 )]
for i in range (n + 1 ):
for j in range (m + 1 ):
if (i = = 0 or j = = 0 ):
sum [i][j] = 0
continue
sum [i][j] = arr[i - 1 ][j - 1 ] + sum [i - 1 ][j] + \
sum [i][j - 1 ] - sum [i - 1 ][j - 1 ]
ans = 0
for i in range ( 1 , n + 1 ):
for j in range ( 1 , m + 1 ):
if (i + ans - 1 > n or j + ans - 1 > m):
break
mid = ans
lo = ans
hi = min (n - i + 1 , m - j + 1 )
while (lo < hi):
mid = (hi + lo + 1 ) / / 2
if ( sum [i + mid - 1 ][j + mid - 1 ] +
sum [i - 1 ][j - 1 ] -
sum [i + mid - 1 ][j - 1 ] -
sum [i - 1 ][j + mid - 1 ] < = K):
lo = mid
else :
hi = mid - 1
ans = max (ans, lo)
print (ans)
if __name__ = = '__main__' :
arr = [[ 1 , 1 , 3 , 2 , 4 , 3 , 2 ],
[ 1 , 1 , 3 , 2 , 4 , 3 , 2 ],
[ 1 , 1 , 3 , 2 , 4 , 3 , 2 ]]
K = 4
findMaxMatrixSize(arr, K)
|
C#
using System;
class GFG {
static void findMaxMatrixSize( int [, ] arr, int K)
{
int i, j;
int n = arr.GetLength(0);
int m = arr.GetLength(1);
int [, ] sum = new int [n + 1, m + 1];
for (i = 0; i <= n; i++) {
for (j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
sum[i, j] = 0;
continue ;
}
sum[i, j] = arr[i - 1, j - 1]
+ sum[i - 1, j] + sum[i, j - 1]
- sum[i - 1, j - 1];
}
}
int ans = 0;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
if (i + ans - 1 > n || j + ans - 1 > m)
break ;
int mid, lo = ans;
int hi = Math.Min(n - i + 1, m - j + 1);
while (lo < hi) {
mid = (hi + lo + 1) / 2;
if (sum[i + mid - 1, j + mid - 1]
+ sum[i - 1, j - 1]
- sum[i + mid - 1, j - 1]
- sum[i - 1, j + mid - 1]
<= K) {
lo = mid;
}
else {
hi = mid - 1;
}
}
ans = Math.Max(ans, lo);
}
}
Console.Write(ans + "\n" );
}
public static void Main(String[] args)
{
int [, ] arr = { { 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 } };
int K = 4;
findMaxMatrixSize(arr, K);
}
}
|
Javascript
<script>
function findMaxMatrixSize(arr, K)
{
let i, j;
let n = arr.length;
let m = arr[0].length;
let sum=[];
for (i =0;i<n+1;i++){
sum[i] = [];
for (j =0;j<m+1;j++){
sum[i][j] = 0;
}
}
for ( i = 0; i <= n; i++) {
for (j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
sum[i][j] = 0;
continue ;
}
sum[i][j] = arr[i - 1][j - 1] + sum[i - 1][j]
+ sum[i][j - 1] - sum[i - 1][j - 1];
}
}
let ans = 0;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
if (i + ans - 1 > n || j + ans - 1 > m)
break ;
let mid, lo = ans;
let hi = Math.min(n - i + 1, m - j + 1);
while (lo < hi) {
mid = Math.floor((hi + lo + 1) / 2);
if (sum[i + mid - 1][j + mid - 1]
+ sum[i - 1][j - 1]
- sum[i + mid - 1][j - 1]
- sum[i - 1][j + mid - 1]
<= K) {
lo = mid;
}
else {
hi = mid - 1;
}
}
ans = Math.max(ans, lo);
}
}
document.write(ans , '<br>' );
}
let arr = [[ 1, 1, 3, 2, 4, 3, 2 ],
[ 1, 1, 3, 2, 4, 3, 2 ],
[ 1, 1, 3, 2, 4, 3, 2 ]];
let K = 4;
findMaxMatrixSize(arr, K);
</script>
|
C++
#include <bits/stdc++.h>
using namespace std;
void findMaxMatrixSize(vector<vector< int > > arr, int K)
{
int i, j;
int n = arr.size();
int m = arr[0].size();
int sum[n + 1][m + 1];
for ( int i = 0; i <= n; i++) {
for ( int j = 0; j <= m; j++) {
if (i == 0 || j == 0) {
sum[i][j] = 0;
continue ;
}
sum[i][j] = arr[i - 1][j - 1] + sum[i - 1][j]
+ sum[i][j - 1] - sum[i - 1][j - 1];
}
}
int ans = 0;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
if (i + ans - 1 > n || j + ans - 1 > m)
break ;
int mid, lo = ans;
int hi = min(n - i + 1, m - j + 1);
while (lo < hi) {
mid = (hi + lo + 1) / 2;
if (sum[i + mid - 1][j + mid - 1]
+ sum[i - 1][j - 1]
- sum[i + mid - 1][j - 1]
- sum[i - 1][j + mid - 1]
<= K) {
lo = mid;
}
else {
hi = mid - 1;
}
}
ans = max(ans, lo);
}
}
cout << ans << endl;
}
int main()
{
vector<vector< int > > arr;
arr = { { 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 },
{ 1, 1, 3, 2, 4, 3, 2 } };
int K = 4;
findMaxMatrixSize(arr, K);
return 0;
}
|
Time Complexity: O(N*N*log(N))
Auxiliary Space: O(M*N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 Jul, 2021
Like Article
Save Article