Maximum size rectangle binary sub-matrix with all 1s

Given a binary matrix, find the maximum size rectangle binary-sub-matrix with all 1’s.
Example:

```Input:
0 1 1 0
1 1 1 1
1 1 1 1
1 1 0 0
Output :
1 1 1 1
1 1 1 1
Explanation :
The largest rectangle with only 1's is from
(1, 0) to (2, 3) which is
1 1 1 1
1 1 1 1

Input:
0 1 1
1 1 1
0 1 1
Output:
1 1
1 1
1 1
Explanation :
The largest rectangle with only 1's is from
(0, 1) to (2, 2) which is
1 1
1 1
1 1
```

Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

There is already an algorithm discussed a dynamic programming based solution for finding largest square with 1s.

Approach: In this post an interesting method is discussed that uses largest rectangle under histogram as a subroutine.
If the height of bars of the histogram is given then the largest area of the histogram can be found. This way in each row, the largest area of bars of the histogram can be found. To get the largest rectangle full of 1’s, update the next row with the previous row and find the largest area under the histogram, i.e. consider each 1’s as filled squares and 0’s with an empty square and consider each row as the base.

Illustration:

```Input :
0 1 1 0
1 1 1 1
1 1 1 1
1 1 0 0
Step 1:
0 1 1 0  maximum area  = 2
Step 2:
row 1  1 2 2 1  area = 4, maximum area becomes 4
row 2  2 3 3 2  area = 8, maximum area becomes 8
row 3  3 4 0 0  area = 6, maximum area remains 8
```

Algorithm:

1. Run a loop to traverse through the rows.
2. Now If the current row is not the first row then update the row as follows, if matrix[i][j] is not zero then matrix[i][j] = matrix[i-1][j] + matrix[i][j].
3. Find the maximum rectangular area under the histogram, consider the ith row as heights of bars of a histogram. This can be calculated as given in this article Largest Rectangular Area in a Histogram
4. Do the previous two steps for all rows and print the maximum area of all the rows.

Note: It is strongly recommended to refer this post first as most of the code taken from there.
Implementation

 `// C++ program to find largest rectangle with all 1s ` `// in a binary matrix ` `#include ` `using` `namespace` `std; ` ` `  `// Rows and columns in input matrix ` `#define R 4 ` `#define C 4 ` ` `  `// Finds the maximum area under the histogram represented ` `// by histogram.  See below article for details. ` `// https:// www.geeksforgeeks.org/largest-rectangle-under-histogram/ ` `int` `maxHist(``int` `row[]) ` `{ ` `    ``// Create an empty stack. The stack holds indexes of ` `    ``// hist[] array/ The bars stored in stack are always ` `    ``// in increasing order of their heights. ` `    ``stack<``int``> result; ` ` `  `    ``int` `top_val; ``// Top of stack ` ` `  `    ``int` `max_area = 0; ``// Initialize max area in current ` `    ``// row (or histogram) ` ` `  `    ``int` `area = 0; ``// Initialize area with current top ` ` `  `    ``// Run through all bars of given histogram (or row) ` `    ``int` `i = 0; ` `    ``while` `(i < C) { ` `        ``// If this bar is higher than the bar on top stack, ` `        ``// push it to stack ` `        ``if` `(result.empty() || row[result.top()] <= row[i]) ` `            ``result.push(i++); ` ` `  `        ``else` `{ ` `            ``// If this bar is lower than top of stack, then ` `            ``// calculate area of rectangle with stack top as ` `            ``// the smallest (or minimum height) bar. 'i' is ` `            ``// 'right index' for the top and element before ` `            ``// top in stack is 'left index' ` `            ``top_val = row[result.top()]; ` `            ``result.pop(); ` `            ``area = top_val * i; ` ` `  `            ``if` `(!result.empty()) ` `                ``area = top_val * (i - result.top() - 1); ` `            ``max_area = max(area, max_area); ` `        ``} ` `    ``} ` ` `  `    ``// Now pop the remaining bars from stack and calculate area ` `    ``// with every popped bar as the smallest bar ` `    ``while` `(!result.empty()) { ` `        ``top_val = row[result.top()]; ` `        ``result.pop(); ` `        ``area = top_val * i; ` `        ``if` `(!result.empty()) ` `            ``area = top_val * (i - result.top() - 1); ` ` `  `        ``max_area = max(area, max_area); ` `    ``} ` `    ``return` `max_area; ` `} ` ` `  `// Returns area of the largest rectangle with all 1s in A[][] ` `int` `maxRectangle(``int` `A[][C]) ` `{ ` `    ``// Calculate area for first row and initialize it as ` `    ``// result ` `    ``int` `result = maxHist(A[0]); ` ` `  `    ``// iterate over row to find maximum rectangular area ` `    ``// considering each row as histogram ` `    ``for` `(``int` `i = 1; i < R; i++) { ` ` `  `        ``for` `(``int` `j = 0; j < C; j++) ` ` `  `            ``// if A[i][j] is 1 then add A[i -1][j] ` `            ``if` `(A[i][j]) ` `                ``A[i][j] += A[i - 1][j]; ` ` `  `        ``// Update result if area with current row (as last row) ` `        ``// of rectangle) is more ` `        ``result = max(result, maxHist(A[i])); ` `    ``} ` ` `  `    ``return` `result; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `A[][C] = { ` `        ``{ 0, 1, 1, 0 }, ` `        ``{ 1, 1, 1, 1 }, ` `        ``{ 1, 1, 1, 1 }, ` `        ``{ 1, 1, 0, 0 }, ` `    ``}; ` ` `  `    ``cout << ``"Area of maximum rectangle is "` `         ``<< maxRectangle(A); ` ` `  `    ``return` `0; ` `} `

 `// Java program to find largest rectangle with all 1s ` `// in a binary matrix ` `import` `java.io.*; ` `import` `java.util.*; ` ` `  `class` `GFG { ` `    ``// Finds the maximum area under the histogram represented ` `    ``// by histogram.  See below article for details. ` `    ``// https:// www.geeksforgeeks.org/largest-rectangle-under-histogram/ ` `    ``static` `int` `maxHist(``int` `R, ``int` `C, ``int` `row[]) ` `    ``{ ` `        ``// Create an empty stack. The stack holds indexes of ` `        ``// hist[] array/ The bars stored in stack are always ` `        ``// in increasing order of their heights. ` `        ``Stack result = ``new` `Stack(); ` ` `  `        ``int` `top_val; ``// Top of stack ` ` `  `        ``int` `max_area = ``0``; ``// Initialize max area in current ` `        ``// row (or histogram) ` ` `  `        ``int` `area = ``0``; ``// Initialize area with current top ` ` `  `        ``// Run through all bars of given histogram (or row) ` `        ``int` `i = ``0``; ` `        ``while` `(i < C) { ` `            ``// If this bar is higher than the bar on top stack, ` `            ``// push it to stack ` `            ``if` `(result.empty() || row[result.peek()] <= row[i]) ` `                ``result.push(i++); ` ` `  `            ``else` `{ ` `                ``// If this bar is lower than top of stack, then ` `                ``// calculate area of rectangle with stack top as ` `                ``// the smallest (or minimum height) bar. 'i' is ` `                ``// 'right index' for the top and element before ` `                ``// top in stack is 'left index' ` `                ``top_val = row[result.peek()]; ` `                ``result.pop(); ` `                ``area = top_val * i; ` ` `  `                ``if` `(!result.empty()) ` `                    ``area = top_val * (i - result.peek() - ``1``); ` `                ``max_area = Math.max(area, max_area); ` `            ``} ` `        ``} ` ` `  `        ``// Now pop the remaining bars from stack and calculate ` `        ``// area with every popped bar as the smallest bar ` `        ``while` `(!result.empty()) { ` `            ``top_val = row[result.peek()]; ` `            ``result.pop(); ` `            ``area = top_val * i; ` `            ``if` `(!result.empty()) ` `                ``area = top_val * (i - result.peek() - ``1``); ` ` `  `            ``max_area = Math.max(area, max_area); ` `        ``} ` `        ``return` `max_area; ` `    ``} ` ` `  `    ``// Returns area of the largest rectangle with all 1s in ` `    ``// A[][] ` `    ``static` `int` `maxRectangle(``int` `R, ``int` `C, ``int` `A[][]) ` `    ``{ ` `        ``// Calculate area for first row and initialize it as ` `        ``// result ` `        ``int` `result = maxHist(R, C, A[``0``]); ` ` `  `        ``// iterate over row to find maximum rectangular area ` `        ``// considering each row as histogram ` `        ``for` `(``int` `i = ``1``; i < R; i++) { ` ` `  `            ``for` `(``int` `j = ``0``; j < C; j++) ` ` `  `                ``// if A[i][j] is 1 then add A[i -1][j] ` `                ``if` `(A[i][j] == ``1``) ` `                    ``A[i][j] += A[i - ``1``][j]; ` ` `  `            ``// Update result if area with current row (as last ` `            ``// row of rectangle) is more ` `            ``result = Math.max(result, maxHist(R, C, A[i])); ` `        ``} ` ` `  `        ``return` `result; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `R = ``4``; ` `        ``int` `C = ``4``; ` ` `  `        ``int` `A[][] = { ` `            ``{ ``0``, ``1``, ``1``, ``0` `}, ` `            ``{ ``1``, ``1``, ``1``, ``1` `}, ` `            ``{ ``1``, ``1``, ``1``, ``1` `}, ` `            ``{ ``1``, ``1``, ``0``, ``0` `}, ` `        ``}; ` `        ``System.out.print(``"Area of maximum rectangle is "` `+ maxRectangle(R, C, A)); ` `    ``} ` `} ` ` `  `// Contributed by Prakriti Gupta `

 `# Python3 program to find largest rectangle  ` `# with all 1s in a binary matrix  ` ` `  `# Rows and columns in input matrix  ` `R ``=` `4` `C ``=` `4` ` `  `# Finds the maximum area under the histogram represented  ` `# by histogram. See below article for details.  ` `# https:# www.geeksforgeeks.org / largest-rectangle-under-histogram / def maxHist(row): ` ` `  `    ``# Create an empty stack. The stack holds  ` `    ``# indexes of hist array / The bars stored   ` `    ``# in stack are always in increasing order  ` `    ``# of their heights.  ` `    ``result ``=` `[] ` ` `  `    ``top_val ``=` `0`     `# Top of stack  ` ` `  `    ``max_area ``=` `0` `# Initialize max area in current  ` `                 ``# row (or histogram)  ` ` `  `    ``area ``=` `0` `# Initialize area with current top  ` ` `  `    ``# Run through all bars of given ` `    ``# histogram (or row)  ` `    ``i ``=` `0` `    ``while` `(i < C):  ` `     `  `        ``# If this bar is higher than the  ` `        ``# bar on top stack, push it to stack  ` `        ``if` `(``len``(result) ``=``=` `0``) ``or` `(row[result[``0``]] <``=` `row[i]): ` `            ``result.append(i) ` `            ``i ``+``=` `1` `        ``else``: ` `         `  `            ``# If this bar is lower than top of stack,  ` `            ``# then calculate area of rectangle with  ` `            ``# stack top as the smallest (or minimum  ` `            ``# height) bar. 'i' is 'right index' for  ` `            ``# the top and element before top in stack ` `            ``# is 'left index'  ` `            ``top_val ``=` `row[result[``0``]]  ` `            ``result.pop(``0``)  ` `            ``area ``=` `top_val ``*` `i  ` ` `  `            ``if` `(``len``(result)): ` `                ``area ``=` `top_val ``*` `(i ``-` `result[``0``] ``-` `1` `)  ` `            ``max_area ``=` `max``(area, max_area)  ` `         `  `    ``# Now pop the remaining bars from stack  ` `    ``# and calculate area with every popped ` `    ``# bar as the smallest bar  ` `    ``while` `(``len``(result)): ` `        ``top_val ``=` `row[result[``0``]]  ` `        ``result.pop(``0``)  ` `        ``area ``=` `top_val ``*` `i  ` `        ``if` `(``len``(result)):  ` `            ``area ``=` `top_val ``*` `(i ``-` `result[``0``] ``-` `1` `)  ` ` `  `        ``max_area ``=` `max``(area, max_area)  ` `     `  `    ``return` `max_area  ` ` `  `# Returns area of the largest rectangle  ` `# with all 1s in A  ` `def` `maxRectangle(A): ` `     `  `    ``# Calculate area for first row and  ` `    ``# initialize it as result  ` `    ``result ``=` `maxHist(A[``0``])  ` ` `  `    ``# iterate over row to find maximum rectangular  ` `    ``# area considering each row as histogram  ` `    ``for` `i ``in` `range``(``1``, R): ` `     `  `        ``for` `j ``in` `range``(C): ` ` `  `            ``# if A[i][j] is 1 then add A[i -1][j]  ` `            ``if` `(A[i][j]): ` `                ``A[i][j] ``+``=` `A[i ``-` `1``][j]  ` ` `  `        ``# Update result if area with current  ` `        ``# row (as last row) of rectangle) is more  ` `        ``result ``=` `max``(result, maxHist(A[i]))  ` `     `  `    ``return` `result  ` `     `  `# Driver Code  ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``A ``=` `[[``0``, ``1``, ``1``, ``0``], ` `         ``[``1``, ``1``, ``1``, ``1``],  ` `         ``[``1``, ``1``, ``1``, ``1``],  ` `         ``[``1``, ``1``, ``0``, ``0``]]  ` ` `  `    ``print``(``"Area of maximum rectangle is"``,  ` `                         ``maxRectangle(A)) ` `     `  `# This code is contributed  ` `# by SHUBHAMSINGH10 `

 `// C# program to find largest rectangle ` `// with all 1s in a binary matrix ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG { ` `    ``// Finds the maximum area under the ` `    ``// histogram represented by histogram. ` `    ``// See below article for details. ` `    ``// https:// www.geeksforgeeks.org/largest-rectangle-under-histogram/ ` `    ``public` `static` `int` `maxHist(``int` `R, ``int` `C, ` `                              ``int``[] row) ` `    ``{ ` `        ``// Create an empty stack. The stack ` `        ``// holds indexes of hist[] array. ` `        ``// The bars stored in stack are always ` `        ``// in increasing order of their heights. ` `        ``Stack<``int``> result = ``new` `Stack<``int``>(); ` ` `  `        ``int` `top_val; ``// Top of stack ` ` `  `        ``int` `max_area = 0; ``// Initialize max area in ` `        ``// current row (or histogram) ` ` `  `        ``int` `area = 0; ``// Initialize area with ` `        ``// current top ` ` `  `        ``// Run through all bars of ` `        ``// given histogram (or row) ` `        ``int` `i = 0; ` `        ``while` `(i < C) { ` `            ``// If this bar is higher than the ` `            ``// bar on top stack, push it to stack ` `            ``if` `(result.Count == 0 || row[result.Peek()] <= row[i]) { ` `                ``result.Push(i++); ` `            ``} ` ` `  `            ``else` `{ ` `                ``// If this bar is lower than top ` `                ``// of stack, then calculate area of ` `                ``// rectangle with stack top as ` `                ``// the smallest (or minimum height) ` `                ``// bar. 'i' is 'right index' for ` `                ``// the top and element before ` `                ``// top in stack is 'left index' ` `                ``top_val = row[result.Peek()]; ` `                ``result.Pop(); ` `                ``area = top_val * i; ` ` `  `                ``if` `(result.Count > 0) { ` `                    ``area = top_val * (i - result.Peek() - 1); ` `                ``} ` `                ``max_area = Math.Max(area, max_area); ` `            ``} ` `        ``} ` ` `  `        ``// Now pop the remaining bars from ` `        ``// stack and calculate area with ` `        ``// every popped bar as the smallest bar ` `        ``while` `(result.Count > 0) { ` `            ``top_val = row[result.Peek()]; ` `            ``result.Pop(); ` `            ``area = top_val * i; ` `            ``if` `(result.Count > 0) { ` `                ``area = top_val * (i - result.Peek() - 1); ` `            ``} ` ` `  `            ``max_area = Math.Max(area, max_area); ` `        ``} ` `        ``return` `max_area; ` `    ``} ` ` `  `    ``// Returns area of the largest ` `    ``// rectangle with all 1s in A[][] ` `    ``public` `static` `int` `maxRectangle(``int` `R, ``int` `C, ` `                                   ``int``[][] A) ` `    ``{ ` `        ``// Calculate area for first row ` `        ``// and initialize it as result ` `        ``int` `result = maxHist(R, C, A[0]); ` ` `  `        ``// iterate over row to find ` `        ``// maximum rectangular area ` `        ``// considering each row as histogram ` `        ``for` `(``int` `i = 1; i < R; i++) { ` `            ``for` `(``int` `j = 0; j < C; j++) { ` ` `  `                ``// if A[i][j] is 1 then ` `                ``// add A[i -1][j] ` `                ``if` `(A[i][j] == 1) { ` `                    ``A[i][j] += A[i - 1][j]; ` `                ``} ` `            ``} ` ` `  `            ``// Update result if area with current ` `            ``// row (as last row of rectangle) is more ` `            ``result = Math.Max(result, maxHist(R, C, A[i])); ` `        ``} ` ` `  `        ``return` `result; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `Main(``string``[] args) ` `    ``{ ` `        ``int` `R = 4; ` `        ``int` `C = 4; ` ` `  `        ``int``[][] A = ``new` `int``[][] { ` `            ``new` `int``[] { 0, 1, 1, 0 }, ` `            ``new` `int``[] { 1, 1, 1, 1 }, ` `            ``new` `int``[] { 1, 1, 1, 1 }, ` `            ``new` `int``[] { 1, 1, 0, 0 } ` `        ``}; ` `        ``Console.Write(``"Area of maximum rectangle is "` `+ maxRectangle(R, C, A)); ` `    ``} ` `} ` ` `  `// This code is contributed by Shrikant13 `

Output :
`Area of maximum rectangle is 8`

Complexity Analysis:

• Time Complexity: O(R x C).
Only one traversal of the matrix is required, so the time complexity is O(R X C)
• Space Complexity: O(C).
Stack is required to store the columns, so so space complexity is O(C)

This article is contributed by Sanjiv Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.