Skip to content
Related Articles

Related Articles

Maximum size of subset of given array such that a triangle can be formed by any three integers as the sides of the triangle

View Discussion
Improve Article
Save Article
  • Last Updated : 13 Oct, 2021
View Discussion
Improve Article
Save Article

Given an array arr[] consisting of N integers, the task is to find the size of the largest subset of the array such that a triangle can be formed from any of the three integers of the subset as the sides of a triangle.

Examples:

Input: arr[] = {1, 4, 7, 4}
Output: 3
Explanation: A possible subsets that follow the given conditions are {1, 4, 4} and {4, 4, 7}. The size of both of these subsets is 3 which is the maximum possible.

Input: arr[] = {2, 7, 4, 1, 6, 9, 5, 3}
Output: 4

Approach: The given problem can be solved with the help of the Greedy Approach using the Sliding Window Technique. It is known that for a triangle having side lengths A, B, and C, A + B > C must hold true where A and B are the sides with smaller lengths. Based on the above observation the given problem can be solved using the following steps:

  • Sort the given array arr[] in non-decreasing order.
  • Maintain two variables i and j where i keep track of the starting point of the current window and j keep track of the ending point of the current window. Initially i = 0 and j = i + 2.
  • Increment the value of j until arr[i] + arr[i+1] > arr[j] and keep track of the maximum value of j – i in a variable maxSize. If arr[i] + arr[i+1] > arr[j], increment the value of i by 1.
  • Follow the above step till the whole array has been traversed.
  • After completing the above steps, the value stored in maxSize is the required result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum size of
// the subset of the given array such
// that a triangle can be formed from any
// three integers of the subset as sides
int maximizeSubset(int arr[], int N)
{
    // Sort arr[] in increasing order
    sort(arr, arr + N);
 
    // Stores the maximum size of a valid
    // subset of the given array
    int maxSize = 0;
 
    // Stores the starting index of the
    // current window
    int i = 0;
 
    // Stores the last index of the
    // current window
    int j = i + 2;
 
    // Iterate over the array arr[]
    while (i < N - 2) {
 
        // Increment j till the value
        // of arr[i] + arr[i + 1] >
        // arr[j] holds true
        while (arr[i] + arr[i + 1] > arr[j]) {
            j++;
        }
 
        // Update the value of maxSize
        maxSize = max(maxSize, j - i);
 
        i++;
        j = max(j, i + 2);
    }
 
    // Return Answer
    return maxSize;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 7, 4, 1, 6, 9, 5, 3 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << maximizeSubset(arr, N) << endl;
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to find the maximum size of
// the subset of the given array such
// that a triangle can be formed from any
// three integers of the subset as sides
static int maximizeSubset(int arr[], int N)
{
   
    // Sort arr[] in increasing order
    Arrays.sort(arr);
 
    // Stores the maximum size of a valid
    // subset of the given array
    int maxSize = 0;
 
    // Stores the starting index of the
    // current window
    int i = 0;
 
    // Stores the last index of the
    // current window
    int j = i + 2;
 
    // Iterate over the array arr[]
    while (i < N - 2) {
 
        // Increment j till the value
        // of arr[i] + arr[i + 1] >
        // arr[j] holds true
         
        while (j<N && arr[i] + arr[i + 1] > arr[j]) {
            j++;
        }
 
        // Update the value of maxSize
        maxSize = Math.max(maxSize, j - i);
 
        i++;
        j = Math.max(j, i + 2);
    }
 
    // Return Answer
    return maxSize;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 2, 7, 4, 1, 6, 9, 5, 3 };
    int N = arr.length;
 
    System.out.print(maximizeSubset(arr, N) +"\n");
}
}
 
// This code is contributed by 29AjayKumar

Python3




# python program for the above approach
 
# Function to find the maximum size of
# the subset of the given array such
# that a triangle can be formed from any
# three integers of the subset as sides
 
 
def maximizeSubset(arr, N):
    # Sort arr[] in increasing order
    arr.sort()
 
    # Stores the maximum size of a valid
    # subset of the given array
    maxSize = 0
 
    # Stores the starting index of the
    # current window
    i = 0
 
    # Stores the last index of the
    # current window
    j = i + 2
 
    # Iterate over the array arr[]
    while (i < N - 2):
 
                # Increment j till the value
                # of arr[i] + arr[i + 1] >
                # arr[j] holds true
        while (j < N and arr[i] + arr[i + 1] > arr[j]):
            j = j + 1
 
            # Update the value of maxSize
        maxSize = max(maxSize, j - i)
        i += 1
        j = max(j, i + 2)
 
        # Return Answer
    return maxSize
 
 
# Driver Code
if __name__ == "__main__":
 
    arr = [2, 7, 4, 1, 6, 9, 5, 3]
    N = len(arr)
    print(maximizeSubset(arr, N))
 
    # This code is contributed by rakeshsahni

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the maximum size of
// the subset of the given array such
// that a triangle can be formed from any
// three integers of the subset as sides
static int maximizeSubset(int []arr, int N)
{
    // Sort arr[] in increasing order
    Array.Sort(arr);
 
    // Stores the maximum size of a valid
    // subset of the given array
    int maxSize = 0;
 
    // Stores the starting index of the
    // current window
    int i = 0;
 
    // Stores the last index of the
    // current window
    int j = i + 2;
 
    // Iterate over the array arr[]
    while (i < N - 2) {
 
        // Increment j till the value
        // of arr[i] + arr[i + 1] >
        // arr[j] holds true
        if(j>=N || i+1 >=N)
           break;
        while (j<N && arr[i] + arr[i + 1] > arr[j]) {
            j++;
        }
 
        // Update the value of maxSize
        maxSize = Math.Max(maxSize, j - i);
         
        i++;
        j = Math.Max(j, i + 2);
    }
 
    // Return Answer
    return maxSize;
}
 
// Driver Code
public static void Main()
{
    int []arr = { 2, 7, 4, 1, 6, 9, 5, 3 };
    int N = arr.Length;
 
    Console.Write(maximizeSubset(arr, N));
}
}
 
// This code is contributed by SURENDRA_GANGWAR.

Javascript




<script>
    // JavaScript program for the above approach
 
    // Function to find the maximum size of
    // the subset of the given array such
    // that a triangle can be formed from any
    // three integers of the subset as sides
    const maximizeSubset = (arr, N) => {
        // Sort arr[] in increasing order
        arr.sort((a, b) => a - b)
 
 
        // Stores the maximum size of a valid
        // subset of the given array
        let maxSize = 0;
 
        // Stores the starting index of the
        // current window
        let i = 0;
 
        // Stores the last index of the
        // current window
        let j = i + 2;
 
        // Iterate over the array arr[]
        while (i < N - 2) {
 
            // Increment j till the value
            // of arr[i] + arr[i + 1] >
            // arr[j] holds true
            while (arr[i] + arr[i + 1] > arr[j]) {
                j++;
            }
 
            // Update the value of maxSize
            maxSize = Math.max(maxSize, j - i);
 
            i++;
            j = Math.max(j, i + 2);
        }
 
        // Return Answer
        return maxSize;
    }
 
    // Driver Code
 
    let arr = [2, 7, 4, 1, 6, 9, 5, 3];
    let N = arr.length;
 
    document.write(maximizeSubset(arr, N));
 
    // This code is contributed by rakeshsahni
 
</script>

Output: 

4

 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!