Skip to content
Related Articles

Related Articles

Improve Article

Maximum size of sub-array that satisfies the given condition

  • Difficulty Level : Medium
  • Last Updated : 27 Apr, 2021

Given an array arr[] of integers. The task is to return the length of the maximum size sub-array such that either one of the condition is satisfied: 

  1. arr[k] > arr[k + 1] when k is odd and arr[k] < arr[k + 1] when k is even.
  2. arr[k] > arr[k + 1] when k is even and arr[k] < arr[k + 1] when k is odd.

Examples: 

Input: arr[] = {9, 4, 2, 10, 7, 8, 8, 1, 9} 
Output:
The required sub-array is {4, 2, 10, 7, 8} which satisfies the first condition.
Input: arr[] = {4, 8, 12, 16} 
Output: 2  

Approach: As only comparisons between adjacent elements is required. So if the comparisons are to be represented by -1, 0, 1 then we want the longest sequence of alternating 1, -1, 1, …, -1 (starting with either 1 or -1) where: 

  • 0 -> arr[i] = arr[i + 1]
  • 1 -> arr[i] > arr[i + 1]
  • -1 -> arr[i] < arr[i + 1]

For example, if we have an array arr[] = {9, 4, 2, 10, 7, 8, 8, 1, 9} then the comparisons will be {1, 1, -1, 1, -1, 0, -1, 1} and all possible sub-arrays are {1}, {1, -1, 1, -1}, {0}, {-1, 1}.
Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include<bits/stdc++.h>
using namespace std;
 
// Function that compares a and b
int cmp(int a, int b)
{
    return (a > b) - (a < b);
}
 
// Function to return length of longest subarray
// that satisfies one of the given conditions
int maxSubarraySize(int arr[], int n)
{
    int ans = 1;
    int anchor = 0;
 
    for (int i = 1; i < n; i++)
    {
        int c = cmp(arr[i - 1], arr[i]);
        if (c == 0)
            anchor = i;
        else if (i == n - 1 ||
                 c * cmp(arr[i], arr[i + 1]) != -1)
        {
            ans = max(ans, i - anchor + 1);
            anchor = i;
        }
    }
         
    return ans;
}
     
 
// Driver Code
int main()
{
    int arr[] = {9, 4, 2, 10, 7, 8, 8, 1, 9};
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Print the required answer
    cout << maxSubarraySize(arr, n);
}
 
// This code is contributed by
// Surendra_Gangwar

Java




// Java implementation of the approach
 
class GFG
{
     
// Function that compares a and b
static int cmp(int a, int b)
{
    if(a > b)
        return 1;
    else if(a == b)
        return 0;
    else
        return -1;
}
 
// Function to return length of longest subarray
// that satisfies one of the given conditions
static int maxSubarraySize(int []arr, int n)
{
    int ans = 1;
    int anchor = 0;
 
    for (int i = 1; i < n; i++)
    {
        int c = cmp(arr[i - 1], arr[i]);
        if (c == 0)
            anchor = i;
        else if (i == n - 1 ||
                c * cmp(arr[i], arr[i + 1]) != -1)
        {
            ans = Math.max(ans, i - anchor + 1);
            anchor = i;
        }
    }
         
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int []arr = {9, 4, 2, 10, 7, 8, 8, 1, 9};
    int n = arr.length;
 
    // Print the required answer
    System.out.println(maxSubarraySize(arr, n));
}
}
 
// This code has been contributed by 29AjayKumar

Python3




# Python3 implementation of the approach
 
# Function that compares a and b
def cmp(a, b):
    return (a > b) - (a < b)
 
# Function to return length of longest subarray
# that satisfies one of the given conditions
def maxSubarraySize(arr):
    N = len(arr)
    ans = 1
    anchor = 0
 
    for i in range(1, N):
        c = cmp(arr[i - 1], arr[i])
        if c == 0:
            anchor = i
        elif i == N - 1 or c * cmp(arr[i], arr[i + 1]) != -1:
            ans = max(ans, i - anchor + 1)
            anchor = i
    return ans
 
 
# Driver program
arr = [9, 4, 2, 10, 7, 8, 8, 1, 9]
 
# Print the required answer
print(maxSubarraySize(arr))

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function that compares a and b
static int cmp(int a, int b)
{
    if(a > b)
        return 1;
    else if(a == b)
        return 0;
    else
        return -1;
}
 
// Function to return length of longest subarray
// that satisfies one of the given conditions
static int maxSubarraySize(int []arr, int n)
{
    int ans = 1;
    int anchor = 0;
 
    for (int i = 1; i < n; i++)
    {
        int c = cmp(arr[i - 1], arr[i]);
        if (c == 0)
            anchor = i;
        else if (i == n - 1 ||
                c * cmp(arr[i], arr[i + 1]) != -1)
        {
            ans = Math.Max(ans, i - anchor + 1);
            anchor = i;
        }
    }
         
    return ans;
}
     
 
// Driver Code
static void Main()
{
    int []arr = {9, 4, 2, 10, 7, 8, 8, 1, 9};
    int n = arr.Length;
 
    // Print the required answer
    Console.WriteLine(maxSubarraySize(arr, n));
}
}
 
// This code is contributed by mits

PHP




<?php
// PHP implementation of the approach
 
// Function that compares a and b
function cmp($a, $b)
{
    return ($a > $b) - ($a < $b);
}
 
// Function to return length of longest subarray
// that satisfies one of the given conditions
function maxSubarraySize($arr)
{
    $N = sizeof($arr);
    $ans = 1;
    $anchor = 0;
 
    for ($i = 1; $i < $N; $i++)
    {
        $c = cmp($arr[$i - 1], $arr[$i]);
        if ($c == 0)
            $anchor = $i;
             
        else if ($i == $N - 1 or
                 $c * cmp($arr[$i],
                          $arr[$i + 1]) != -1)
        {
            $ans = max($ans, $i - $anchor + 1);
            $anchor = $i;
        }
    }    
    return $ans;
}
 
// Driver Code
$arr = array(9, 4, 2, 10, 7, 8, 8, 1, 9);
 
// Print the required answer
echo maxSubarraySize($arr);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
// javascript implementation of the approach
    // Function that compares a and b
    function cmp(a , b) {
        if (a > b)
            return 1;
        else if (a == b)
            return 0;
        else
            return -1;
    }
 
    // Function to return length of longest subarray
    // that satisfies one of the given conditions
    function maxSubarraySize(arr , n) {
        var ans = 1;
        var anchor = 0;
 
        for (i = 1; i < n; i++) {
            var c = cmp(arr[i - 1], arr[i]);
            if (c == 0)
                anchor = i;
            else if (i == n - 1 || c * cmp(arr[i], arr[i + 1]) != -1) {
                ans = Math.max(ans, i - anchor + 1);
                anchor = i;
            }
        }
 
        return ans;
    }
 
    // Driver Code
     
        var arr = [ 9, 4, 2, 10, 7, 8, 8, 1, 9 ];
        var n = arr.length;
 
        // Prvar the required answer
        document.write(maxSubarraySize(arr, n));
 
// This code contributed by aashish1995
</script>
Output: 
5

 

Time Complexity: O(N), where N is the length of the array 
Space Complexity: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :