Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximum segment value after putting k breakpoints in a number

  • Difficulty Level : Easy
  • Last Updated : 19 Feb, 2019

Given a large number as string s and an integer k which denotes the number of breakpoints we must put in the number k <= string length. The task is to find maximum segment value after putting exactly k breakpoints.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input : s = "8754", k = 2
Output : Maximum number = 87
Explanation : We need to two breakpoints. After
putting the breakpoints, we get following options
8 75 4
87 5 4
The maximum segment value is 87.

Input : s = "999", k = 1 
Output : Maximum Segment Value = 99
Explanation : We need to one breakpoint. After
putting the breakpoint, we either get 99,9 or
9,99.

One important observation is, the maximum would always be of length “string-length – k” which is the maximum value of any segment. Considering the fact, problem becomes like sliding window problem means we need to find maximum of all substrings of size (string-length – k).

C++




// CPP program to find the maximum segment
// value after putting k breaks.
#include <bits/stdc++.h>
using namespace std;
  
// Function to Find Maximum Number
int findMaxSegment(string &s, int k) {
  
  // Maximum segment length
  int seg_len = s.length() - k;
  
  // Find value of first segment of seg_len
  int res = 0;
  for (int i=0; i<seg_len; i++)
     res = res * 10 + (s[i] - '0');
  
  // Find value of remaining segments using sliding
  // window
  int seg_len_pow = pow(10, seg_len-1);
  int curr_val = res;
  for (int i = 1; i <= (s.length() - seg_len); i++) {
  
    // To find value of current segment, first remove
    // leading digit from previous value    
    curr_val = curr_val - (s[i-1]- '0')*seg_len_pow;
  
    // Then add trailing digit
    curr_val = curr_val*10 + (s[i+seg_len-1]- '0');
  
    res = max(res, curr_val);
  }
  return res;
}
  
// Driver's Function
int main() {
  string s = "8754";
  int k = 2;
  cout << "Maximum number = " << findMaxSegment(s, k);
  return 0;
}

Java




// Java program to find the maximum segment
// value after putting k breaks.
class GFG {
      
    // Function to Find Maximum Number
    static int findMaxSegment(String s, int k) {
      
        // Maximum segment length
        int seg_len = s.length() - k;
      
        // Find value of first segment of seg_len
        int res = 0;
          
        for (int i = 0; i < seg_len; i++)
            res = res * 10 + (s.charAt(i) - '0');
      
        // Find value of remaining segments using 
        // sliding window
        int seg_len_pow = (int)Math.pow(10,
                                    seg_len - 1);
        int curr_val = res;
          
        for (int i = 1
             i <= (s.length() - seg_len); i++) {
      
            // To find value of current segment, 
            // first remove leading digit from 
            // previous value
            curr_val = curr_val - 
            (s.charAt(i - 1) - '0') * seg_len_pow;
          
            // Then add trailing digit
            curr_val = curr_val * 10
               (s.charAt(i + seg_len - 1) - '0');
          
            res = Math.max(res, curr_val);
        }
          
        return res;
    }
      
    // Driver code
    public static void main(String[] args) {
          
        String s = "8754";
        int k = 2;
          
        System.out.print("Maximum number = "
                        + findMaxSegment(s, k));
    }
}
  
// This code is contributed by Anant Agarwal.

Python3




# Python3 program to find the maximum segment 
# value after putting k breaks. 
  
# Function to Find Maximum Number 
def findMaxSegment(s, k):
  
    # Maximum segment length 
    seg_len = len(s) -
  
    # Find value of first segment of seg_len 
    res = 0
    for i in range(seg_len):
        res = res * 10 + (ord(s[i]) - ord('0')) 
  
    # Find value of remaining segments
    # using sliding window 
    seg_len_pow = pow(10, seg_len - 1
    curr_val = res 
    for i in range(1, len(s) - seg_len):
  
        # To find value of current segment, 
        # first remove leading digit from 
        # previous value     
        curr_val = curr_val - (ord(s[i - 1])- 
                               ord('0')) * seg_len_pow 
  
        # Then add trailing digit 
        curr_val = (curr_val * 10 + 
                   (ord(s[i + seg_len - 1]) - ord('0'))) 
  
        res = max(res, curr_val)
    return res
  
# Driver Code
if __name__ == '__main__':
    s = "8754"
    k = 2
    print("Maximum number = ",
         findMaxSegment(s, k))
  
# This code is contributed by PranchalK

C#




// C# program to find the maximum segment
// value after putting k breaks.
using System;
  
class GFG {
      
    // Function to Find Maximum Number
    static int findMaxSegment(string s, int k) {
      
        // Maximum segment length
        int seg_len = s.Length - k;
      
        // Find value of first segment of seg_len
        int res = 0;
          
        for (int i = 0; i < seg_len; i++)
            res = res * 10 + (s[i] - '0');
      
        // Find value of remaining segments using 
        // sliding window
        int seg_len_pow = (int)Math.Pow(10,
                                    seg_len - 1);
        int curr_val = res;
          
        for (int i = 1; 
            i <= (s.Length- seg_len); i++) {
      
            // To find value of current segment, 
            // first remove leading digit from 
            // previous value
            curr_val = curr_val - 
            (s[i - 1] - '0') * seg_len_pow;
          
            // Then add trailing digit
            curr_val = curr_val * 10 + 
            (s[i + seg_len - 1] - '0');
          
            res = Math.Max(res, curr_val);
        }
          
        return res;
    }
      
    // Driver code
    public static void Main() {
          
        String s = "8754";
        int k = 2;
          
        Console.WriteLine("Maximum number = "
                        + findMaxSegment(s, k));
    }
}
  
// This code is contributed by vt_m.
Output:
Maximum number = 87



My Personal Notes arrow_drop_up
Recommended Articles
Page :