Skip to content
Related Articles

Related Articles

Improve Article

Maximum range subarray for each index in Array such that A[i] = min(A[L], A[L+1], … A[R])

  • Last Updated : 20 Aug, 2021
Geek Week

Given an array arr[] of N distinct integers, the task is to calculate for each index i (1≤i≤N) a range [L, R] such that arr[i] = min(arr[L], arr[L+1], … arr[R]), where L≤i≤R and R-L is maximized.

Examples:

Input: N = 3, arr[] = {1, 3, 2}
Output: 1 3
2 2
2 3
Explanation: 1 is minimum in the range [1, 3]
3 is minimum in the range [2, 2]
2 is minimum in range [2, 3]

Input: N = 3, arr[] = {4, 5, 6}
Output: 1 3
2 3
3 3

 

Approach: It can be observed that previous smaller and next smaller elements are required at each index to calculate the required range. The idea is to use stacks to find the previous greater and the next greater elements. Follow the steps below to solve the problem:



  • Create two arrays, L[] and R[], to store the closest smaller element at left and the closest smaller element at the right of the current element respectively.
  • Create a stack S, and add the index of the first element in it.
  • Traverse the given array, arr[], and pop stack until the top of the stack, S is not smaller than the current element.
  • Now set the closest smaller element at the left i.e L[i] as the top of S, and if S is empty, set it as 0. Push the current element into S.
  • Similarly, traverse from the end in opposite direction and follow the same steps to fill the array, R[].
  • Iterate in the range [1, N] and print L[i] and R[i] for each index i.

Below is the implementation for the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the range for each index
void rangeFinder(int arr[], int N)
{
    // Array to store index of closest smaller
    // element at left sub-array
    int L[N];
 
    // Array to store index of closest smaller
    // element at right sub-array
    int R[N];
 
    // Stack to find previous smaller element
    stack<int> S;
 
    // Since there is no element before first
    // element, so set L[0]=0
    L[0] = 0;
 
    // Push the first element index in stack
    S.push(0);
 
    // Traverse the array, arr[]
    for (int i = 1; i < N; i++) {
 
        // Pop until the top of stack is greater
        // than current element
        while (!S.empty() && arr[S.top()] > arr[i])
            S.pop();
 
        // Update L[i] as peek as it is
        // previous smaller element
        if (!S.empty())
            L[i] = S.top() + 1;
 
        // Otherwise, update L[i] to 0
        else
            L[i] = 0;
 
        // Push the current index
        S.push(i);
    }
 
    // Empty the stack, S
    while (!S.empty())
        S.pop();
 
    // Since there is no element after
    // last element, so set R[N-1]=N-1
    R[N - 1] = N - 1;
 
    // Push the last element index into stack
    S.push(N - 1);
 
    // Traverse the array from the end
    for (int i = N - 2; i >= 0; i--) {
 
        // Pop until the top of S is greater
        // than current element
        while (!S.empty() && arr[S.top()] > arr[i])
            S.pop();
 
        // Set R[i] as top as it is previous
        // smaller element from end
        if (!S.empty())
            R[i] = S.top() - 1;
 
        // Otherwise, update R[i] as N-1
        else
            R[i] = N - 1;
 
        // Push the current index
        S.push(i);
    }
 
    // Print the required range using L and R array
    for (int i = 0; i < N; i++) {
        cout << L[i] + 1 << " " << R[i] + 1 << endl;
    }
}
 
// Driver Code
int main()
{
    // Given Input
    int arr[] = { 1, 3, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    rangeFinder(arr, N);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to print the range for each index
static void rangeFinder(int arr[], int N)
{
     
    // Array to store index of closest smaller
    // element at left sub-array
    int[] L = new int[N];
 
    // Array to store index of closest smaller
    // element at right sub-array
    int[] R = new int[N];
   
    // Stack to find previous smaller element
    Stack<Integer> S = new Stack<Integer>();
   
    // Since there is no element before first
    // element, so set L[0]=0
    L[0] = 0;
 
    // Push the first element index in stack
    S.push(0);
 
    // Traverse the array, arr[]
    for(int i = 1; i < N; i++)
    {
         
        // Pop until the top of stack is greater
        // than current element
        while (!S.empty() && arr[S.peek()] > arr[i])
            S.pop();
 
        // Update L[i] as peek as it is
        // previous smaller element
        if (!S.empty())
            L[i] = S.peek() + 1;
 
        // Otherwise, update L[i] to 0
        else
            L[i] = 0;
 
        // Push the current index
        S.push(i);
    }
   
    // Empty the stack, S
    while (!S.empty())
        S.pop();
 
    // Since there is no element after
    // last element, so set R[N-1]=N-1
    R[N - 1] = N - 1;
 
    // Push the last element index into stack
    S.push(N - 1);
   
    // Traverse the array from the end
    for(int i = N - 2; i >= 0; i--)
    {
         
        // Pop until the top of S is greater
        // than current element
        while (!S.empty() && arr[S.peek()] > arr[i])
            S.pop();
 
        // Set R[i] as top as it is previous
        // smaller element from end
        if (!S.empty())
            R[i] = S.peek() - 1;
 
        // Otherwise, update R[i] as N-1
        else
            R[i] = N - 1;
 
        // Push the current index
        S.push(i);
    }
   
    // Print the required range using L and R array
    for(int i = 0; i < N; i++)
    {
        System.out.println((L[i] + 1) + " " +
                           (R[i] + 1));
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given Input
    int arr[] = { 1, 3, 2 };
    int N = arr.length;
   
    // Function Call
    rangeFinder(arr, N);
}
}
 
// This code is contributed by MuskanKalra1

Python3




# Python3 program for the above approach
 
# Function to print the range for each index
def rangeFinder(arr, N):
     
    # Array to store index of closest smaller
    # element at left sub-array
    L = [0 for i in range(N)]
 
    # Array to store index of closest smaller
    # element at right sub-array
    R = [0 for i in range(N)]
 
    # Stack to find previous smaller element
    S = []
 
    # Since there is no element before first
    # element, so set L[0]=0
    L[0] = 0
 
    # Push the first element index in stack
    S.append(0)
 
    # Traverse the array, arr[]
    for i in range(1, N, 1):
         
        # Pop until the top of stack is greater
        # than current element
        while (len(S) > 0 and
         arr[S[len(S) - 1]] > arr[i]):
            S = S[:-1]
 
        # Update L[i] as peek as it is
        # previous smaller element
        if (len(S) > 0):
            L[i] = S[len(S) - 1] + 1
 
        # Otherwise, update L[i] to 0
        else:
            L[i] = 0
 
        # Push the current index
        S.append(i)
 
    # Empty the stack, S
    while (len(S) > 0):
        S.pop()
         
    # Since there is no element after
    # last element, so set R[N-1]=N-1
    R[N - 1] = N - 1
 
    # Push the last element index into stack
    S.append(N - 1)
 
    # Traverse the array from the end
    i = N - 2
     
    while (i >= 0):
         
        # Pop until the top of S is greater
        # than current element
        while (len(S) > 0 and
         arr[S[len(S) - 1]] > arr[i]):
            S = S[:-1]
 
        # Set R[i] as top as it is previous
        # smaller element from end
        if (len(S) > 0):
            R[i] = S[len(S) - 1] - 1;
 
        # Otherwise, update R[i] as N-1
        else:
            R[i] = N - 1
 
        # Push the current index
        S.append(i)
        i -= 1
 
    # Print the required range using L and R array
    for i in range(N):
        print(L[i] + 1, R[i] + 1)
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    arr = [ 1, 3, 2 ]
    N = len(arr)
 
    # Function Call
    rangeFinder(arr, N)
     
# This code is contributed by ipg2016107

C#




// C# program for the above approach
using System;
using System.Collections;
class GFG {
     
    // Function to print the range for each index
    static void rangeFinder(int[] arr, int N)
    {
          
        // Array to store index of closest smaller
        // element at left sub-array
        int[] L = new int[N];
      
        // Array to store index of closest smaller
        // element at right sub-array
        int[] R = new int[N];
        
        // Stack to find previous smaller element
        Stack S = new Stack();
        
        // Since there is no element before first
        // element, so set L[0]=0
        L[0] = 0;
      
        // Push the first element index in stack
        S.Push(0);
      
        // Traverse the array, arr[]
        for(int i = 1; i < N; i++)
        {
              
            // Pop until the top of stack is greater
            // than current element
            while (S.Count > 0 && arr[(int)S.Peek()] > arr[i])
                S.Pop();
      
            // Update L[i] as peek as it is
            // previous smaller element
            if (S.Count > 0)
                L[i] = (int)S.Peek() + 1;
      
            // Otherwise, update L[i] to 0
            else
                L[i] = 0;
      
            // Push the current index
            S.Push(i);
        }
        
        // Empty the stack, S
        while (S.Count > 0)
            S.Pop();
      
        // Since there is no element after
        // last element, so set R[N-1]=N-1
        R[N - 1] = N - 1;
      
        // Push the last element index into stack
        S.Push(N - 1);
        
        // Traverse the array from the end
        for(int i = N - 2; i >= 0; i--)
        {
              
            // Pop until the top of S is greater
            // than current element
            while (S.Count > 0 && arr[(int)S.Peek()] > arr[i])
                S.Pop();
      
            // Set R[i] as top as it is previous
            // smaller element from end
            if (S.Count > 0)
                R[i] = (int)S.Peek() - 1;
      
            // Otherwise, update R[i] as N-1
            else
                R[i] = N - 1;
      
            // Push the current index
            S.Push(i);
        }
        
        // Print the required range using L and R array
        for(int i = 0; i < N; i++)
        {
            Console.WriteLine((L[i] + 1) + " " + (R[i] + 1));
        }
    }
 
  static void Main()
  {
     
    // Given Input
    int[] arr = { 1, 3, 2 };
    int N = arr.Length;
    
    // Function Call
    rangeFinder(arr, N);
  }
}
 
// This code is contributed by divyesh072019.

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to print the range for each index
function rangeFinder(arr, N) {
    // Array to store index of closest smaller
    // element at left sub-array
    let L = new Array(N).fill(0);
 
    // Array to store index of closest smaller
    // element at right sub-array
    let R = new Array(N).fill(0);
 
    // Stack to find previous smaller element
    let S = [];
 
    // Since there is no element before first
    // element, so set L[0]=0
    L[0] = 0;
 
    // Push the first element index in stack
    S.push(0);
 
    // Traverse the array, arr[]
    for (let i = 1; i < N; i++) {
 
        // Pop until the top of stack is greater
        // than current element
        while (S.length && arr[S[S.length - 1]] > arr[i])
            S.pop();
 
        // Update L[i] as peek as it is
        // previous smaller element
        if (S.length)
            L[i] = S[S.length - 1] + 1;
 
        // Otherwise, update L[i] to 0
        else
            L[i] = 0;
 
        // Push the current index
        S.push(i);
    }
 
    // Empty the stack, S
    while (S.length)
        S.pop();
 
    // Since there is no element after
    // last element, so set R[N-1]=N-1
    R[N - 1] = N - 1;
 
    // Push the last element index into stack
    S.push(N - 1);
 
    // Traverse the array from the end
    for (let i = N - 2; i >= 0; i--) {
 
        // Pop until the top of S is greater
        // than current element
        while (S.length && arr[S[S.length - 1]] > arr[i])
            S.pop();
 
        // Set R[i] as top as it is previous
        // smaller element from end
        if (S.length)
            R[i] = S[S.length - 1] - 1;
 
        // Otherwise, update R[i] as N-1
        else
            R[i] = N - 1;
 
        // Push the current index
        S.push(i);
    }
 
    // Print the required range using L and R array
    for (let i = 0; i < N; i++) {
        document.write(L[i] + 1 + " ")
        document.write(R[i] + 1 + "<br>");
    }
}
 
// Driver Code
 
// Given Input
let arr = [1, 3, 2];
let N = arr.length;
 
// Function Call
rangeFinder(arr, N);
 
</script>

Output:

1 3
2 2
2 3

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :