Maximum Product Subarray | Set 3

Given an array A[] that contains both positive and negative integers, find the maximum product subarray.

Examples :

Input: A[] = { 6, -3, -10, 0, 2 }
Output: 180  // The subarray is {6, -3, -10}

Input: A[] = {-1, -3, -10, 0, 60 }
Output: 60  // The subarray is {60}

Input: A[] = { -2, -3, 0, -2, -40 }
Output: 80  // The subarray is {-2, -40}

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to traverse array from left to right keeping two variables minVal and maxVal which represents the minimum and maximum product value till the ith index of the array. Now, if the ith element of the array is negative that means now the values of minVal and maxVal will be swapped as value of maxVal will become minimum by multiplying it with a negative number. Now, compare the minVal and maxVal.
The value of minVal and maxVal depends on the current index element or the product of the current index element and the previous minVal and maxVal respectively.

Below is the implementation of above approach:

 // C++ program to find maximum product subarray #include using namespace std;    // Function to find maximum product subarray int maxProduct(int* arr, int n) {     // Variables to store maximum and minimum     // product till ith index.     int minVal = arr;     int maxVal = arr;        int maxProduct = arr;        for (int i = 1; i < n; i++) {            // When multiplied by -ve number,         // maxVal becomes minVal         // and minVal becomes maxVal.         if (arr[i] < 0)             swap(maxVal, minVal);            // maxVal and minVal stores the         // product of subarray ending at arr[i].         maxVal = max(arr[i], maxVal * arr[i]);         minVal = min(arr[i], minVal * arr[i]);            // Max Product of array.         maxProduct = max(maxProduct, maxVal);     }        // Return maximum product found in array.     return maxProduct; }    // Driver Code int main() {     int arr[] = { -1, -3, -10, 0, 60 };        int n = sizeof(arr) / sizeof(arr);        cout << "Maximum Subarray product is "          << maxProduct(arr, n) << endl;        return 0; }

 // Java program to find maximum product subarray import java.io.*;    class GFG {        // Function to find maximum product subarray     static int maxProduct(int arr[], int n)     {                    // Variables to store maximum and minimum         // product till ith index.         int minVal = arr;         int maxVal = arr;                int maxProduct = arr;                for (int i = 1; i < n; i++)         {                    // When multiplied by -ve number,             // maxVal becomes minVal             // and minVal becomes maxVal.             if (arr[i] < 0)             {                 int temp = maxVal;                 maxVal = minVal;                 minVal =temp;                            }                    // maxVal and minVal stores the             // product of subarray ending at arr[i].             maxVal = Math.max(arr[i], maxVal * arr[i]);             minVal = Math.min(arr[i], minVal * arr[i]);                    // Max Product of array.             maxProduct = Math.max(maxProduct, maxVal);         }                // Return maximum product found in array.         return maxProduct;     }            // Driver Code     public static void main (String[] args)     {         int arr[] = { -1, -3, -10, 0, 60 };         int n = arr.length;                System.out.println( "Maximum Subarray product is "                                     + maxProduct(arr, n));     } }    // This code is contributed by anuj_67.

 # Python 3 program to find maximum  # product subarray    # Function to find maximum  # product subarray def maxProduct(arr, n):            # Variables to store maximum and      # minimum product till ith index.     minVal = arr     maxVal = arr        maxProduct = arr        for i in range(1, n, 1):                    # When multiplied by -ve number,         # maxVal becomes minVal         # and minVal becomes maxVal.         if (arr[i] < 0):             temp = maxVal             maxVal = minVal             minVal = temp                        # maxVal and minVal stores the         # product of subarray ending at arr[i].         maxVal = max(arr[i], maxVal * arr[i])         minVal = min(arr[i], minVal * arr[i])            # Max Product of array.         maxProduct = max(maxProduct, maxVal)        # Return maximum product      # found in array.     return maxProduct    # Driver Code if __name__ == '__main__':     arr = [-1, -3, -10, 0, 60]        n = len(arr)        print("Maximum Subarray product is",                      maxProduct(arr, n))    # This code is contributed by # Surendra_Gangwar

 // C# program to find  // maximum product subarray using System;    class GFG  {        // Function to find maximum     // product subarray     static int maxProduct(int []arr,                            int n)     {                    // Variables to store          // maximum and minimum          // product till ith index.         int minVal = arr;         int maxVal = arr;                int maxProduct = arr;                for (int i = 1; i < n; i++)         {                    // When multiplied by -ve              // number, maxVal becomes              // minVal and minVal              // becomes maxVal.             if (arr[i] < 0)             {                 int temp = maxVal;                 maxVal = minVal;                 minVal = temp;                            }                    // maxVal and minVal stores              // the product of subarray              // ending at arr[i].             maxVal = Math.Max(arr[i],                                maxVal * arr[i]);             minVal = Math.Min(arr[i],                                minVal * arr[i]);                    // Max Product of array.             maxProduct = Math.Max(maxProduct,                                    maxVal);         }                // Return maximum product         // found in array.         return maxProduct;     }            // Driver Code     public static void Main ()     {         int []arr = {-1, -3, -10, 0, 60};         int n = arr.Length;                Console.WriteLine("Maximum Subarray " +                                 "product is " +                            maxProduct(arr, n));     } }    // This code is contributed by anuj_67.



Output:
Maximum Sub array product is 60

Time Complexity: O( n )
Auxiliary Space: O( 1 )

Related Articles:

A Coding Enthusiast Rails Developer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :