Maximum prime moves to convert X to Y

Given two integers X and Y, the task is to convert X to Y using the following operations:

  1. Add any prime number to X.
  2. Subtract any prime number from Y.

Print the maximum number of such operations required or -1 if it is not possible to convert X to Y.

Examples:



Input: X = 2, Y = 4
Output: 1
2 -> 4

Input: X = 5, Y = 6
Output: -1
It is impossible to convert 5 to 6
with the given operations.

Approach: As the task is to maximize the operations, so the minimum possible value must be added to X in every operation. Since the value has to be prime, so the minimum two primes i.e. 2 and 3 can be used as they both are prime and can cover both even and odd parity. Now, there are three cases:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the maximum operations
// required to convert X to Y
int maxOperations(int X, int Y)
{
  
    // X cannot be converted to Y
    if (X > Y)
        return -1;
  
    int diff = Y - X;
  
    // If the differecne is 1
    if (diff == 1)
        return -1;
  
    // If the difference is even
    if (diff % 2 == 0)
        return (diff / 2);
  
    // Add 3 to X and the new
    // difference will be even
    return (1 + ((diff - 3) / 2));
}
  
// Driver code
int main()
{
    int X = 5, Y = 16;
  
    cout << maxOperations(X, Y);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG 
{
  
// Function to return the maximum operations
// required to convert X to Y
static int maxOperations(int X, int Y)
{
  
    // X cannot be converted to Y
    if (X > Y)
        return -1;
  
    int diff = Y - X;
  
    // If the differecne is 1
    if (diff == 1)
        return -1;
  
    // If the difference is even
    if (diff % 2 == 0)
        return (diff / 2);
  
    // Add 3 to X and the new
    // difference will be even
    return (1 + ((diff - 3) / 2));
}
  
// Driver code
public static void main(String []args) 
{
    int X = 5, Y = 16;
  
    System.out.println(maxOperations(X, Y));
}
}
  
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the maximum operations 
# required to convert X to Y 
def maxOperations(X, Y) : 
  
    # X cannot be converted to Y 
    if (X > Y) :
        return -1
  
    diff = Y - X; 
  
    # If the differecne is 1 
    if (diff == 1) :
        return -1
  
    # If the difference is even 
    if (diff % 2 == 0) :
        return (diff // 2); 
  
    # Add 3 to X and the new 
    # difference will be even 
    return (1 + ((diff - 3) // 2)); 
  
# Driver code 
if __name__ == "__main__"
  
    X = 5; Y = 16
  
    print(maxOperations(X, Y)); 
  
# This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;                    
  
class GFG
{
   
// Function to return the maximum operations
// required to convert X to Y
static int maxOperations(int X, int Y)
{
   
    // X cannot be converted to Y
    if (X > Y)
        return -1;
   
    int diff = Y - X;
   
    // If the differecne is 1
    if (diff == 1)
        return -1;
   
    // If the difference is even
    if (diff % 2 == 0)
        return (diff / 2);
   
    // Add 3 to X and the new
    // difference will be even
    return (1 + ((diff - 3) / 2));
}
   
// Driver code
public static void Main(String []args) 
{
    int X = 5, Y = 16;
   
    Console.WriteLine(maxOperations(X, Y));
}
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output:
5

Time Complexity: O(1)




Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :