Skip to content
Related Articles

Related Articles

Improve Article
Maximum possible array sum after performing the given operation
  • Last Updated : 05 May, 2021

Given an array arr[] of size N, the task is to find the maximum sum of the elements of the array after applying the given operation any number of times. In a single operation, choose an index 1 ≤ i < N and multiply both arr[i] and arr[i – 1] by -1.
Examples: 

Input: arr[] = {-10, 5, -4} 
Output: 19 
Perform the operation for i = 1 and 
the array becomes {10, -5, -4} 
Perform the operation for i = 2 and 
the array becomes {10, 5, 4} 
10 + 5 + 4 = 19
Input: arr[] = {10, -4, -8, -11, 3} 
Output: 30 

Approach: This problem can be solved using dynamic programming. Since it is useless to choose and flip the same arr[i], we will consider flipping at most once for each element of the array in order from the left. Let dp[i][0] represents the maximum possible sum up to the ith index without flipping the ith index. dp[i][1] represents the maximum possible sum up to the ith index with flipping the ith index. So, dp(n, 0) is our required answer. 
Base conditions: 

  1. dp[0][0] = 0
  2. dp[0][1] = INT_MIN

Recurrence relation:  

  1. dp[i + 1][0] = max(dp[i][0] + arr[i], dp[i][1] – arr[i])
  2. dp[i + 1][1] = max(dp[i][0] – arr[i], dp[i][1] + arr[i])

Below is the implementation of the above approach:  



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum possible
// sum after performing the given operation
int max_sum(int a[], int n)
{
    // Dp vector to store the answer
    vector<vector<int> > dp(n + 1,
                            vector<int>(2, 0));
 
    // Base value
    dp[0][0] = 0, dp[0][1] = -999999;
 
    for (int i = 0; i <= n - 1; i++) {
        dp[i + 1][0] = max(dp[i][0] + a[i],
                           dp[i][1] - a[i]);
        dp[i + 1][1] = max(dp[i][0] - a[i],
                           dp[i][1] + a[i]);
    }
 
    // Return the maximum sum
    return dp[n][0];
}
 
// Driver code
int main()
{
    int a[] = { -10, 5, -4 };
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << max_sum(a, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to return the maximum possible
// sum after performing the given operation
static int max_sum(int a[], int n)
{
    // Dp vector to store the answer
    int [][]dp = new int[n + 1][2];
                         
    // Base value
    dp[0][0] = 0; dp[0][1] = -999999;
 
    for (int i = 0; i <= n - 1; i++)
    {
        dp[i + 1][0] = Math.max(dp[i][0] + a[i],
                                dp[i][1] - a[i]);
        dp[i + 1][1] = Math.max(dp[i][0] - a[i],
                                dp[i][1] + a[i]);
    }
 
    // Return the maximum sum
    return dp[n][0];
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { -10, 5, -4 };
    int n = a.length;
 
    System.out.println(max_sum(a, n));
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python implementation of the approach
 
# Function to return the maximum possible
# sum after performing the given operation
def max_sum(a, n):
    # Dp vector to store the answer
    dp = [[0 for i in range(2)] for j in range(n+1)]
                         
    # Base value
    dp[0][0] = 0; dp[0][1] = -999999;
 
    for i in range(0, n):
        dp[i + 1][0] = max(dp[i][0] + a[i],
                                dp[i][1] - a[i]);
        dp[i + 1][1] = max(dp[i][0] - a[i],
                                dp[i][1] + a[i]);
 
    # Return the maximum sum
    return dp[n][0];
 
# Driver code
if __name__ == '__main__':
    a = [-10, 5, -4 ];
    n = len(a);
 
    print(max_sum(a, n));
     
# This code is contributed by 29AjayKumar

C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the maximum possible
// sum after performing the given operation
static int max_sum(int []a, int n)
{
    // Dp vector to store the answer
    int [,]dp = new int[n + 1, 2];
                         
    // Base value
    dp[0, 0] = 0; dp[0, 1] = -999999;
 
    for (int i = 0; i <= n - 1; i++)
    {
        dp[i + 1, 0] = Math.Max(dp[i, 0] + a[i],
                                dp[i, 1] - a[i]);
        dp[i + 1, 1] = Math.Max(dp[i, 0] - a[i],
                                dp[i, 1] + a[i]);
    }
 
    // Return the maximum sum
    return dp[n, 0];
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { -10, 5, -4 };
    int n = a.Length;
 
    Console.WriteLine(max_sum(a, n));
}
}
 
// This code is contributed by PrinciRaj1992

Javascript




<script>
// javascript implementation of the approach    // Function to return the maximum possible
    // sum after performing the given operation
    function max_sum(a , n) {
        // Dp vector to store the answer
        var dp = Array(n + 1).fill().map(()=>Array(2).fill(0));
 
        // Base value
        dp[0][0] = 0;
        dp[0][1] = -999999;
 
        for (i = 0; i <= n - 1; i++) {
            dp[i + 1][0] = Math.max(dp[i][0] + a[i], dp[i][1] - a[i]);
            dp[i + 1][1] = Math.max(dp[i][0] - a[i], dp[i][1] + a[i]);
        }
 
        // Return the maximum sum
        return dp[n][0];
    }
 
    // Driver code
     
        var a = [ -10, 5, -4 ];
        var n = a.length;
 
        document.write(max_sum(a, n));
 
// This code is contributed by todaysgaurav
</script>
Output: 
19

 

Time Complexity: O(N)

Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :