Skip to content
Related Articles

Related Articles

Improve Article

Maximum of minimum difference of all pairs from subsequences of given size

  • Difficulty Level : Hard
  • Last Updated : 16 Aug, 2021
Geek Week

Given an integer array A[ ] of size N, the task is to find a subsequence of size B such that the minimum difference between any two of them is maximum and print this largest minimum difference.

Examples:

Input: A[ ] = {1, 2, 3, 5}, B = 3 
Output:
Explanation: 
Possible subsequences of size 3 are {1, 2, 3}, {1, 2, 5}, {1, 3, 5} and {2, 3, 5}. 
For {1, 3, 5}, possible differences are (|1 – 3| = 2), (|3 – 5| = 2) and (|1 – 5| = 4), Minimum(2, 2, 4) = 2 
For the remaining subsequences, the minimum difference comes out to be 1. 
Hence, the maximum of all minimum differences is 2.

Input: A[ ] = {5, 17, 11}, B = 2 
Output: 12 
Explanation: 
Possible subsequences of size 2 are {5, 17}, {17, 11} and {5, 11}. 
For {5, 17}, possible difference is (|5 – 17| = 12), Minimum = 12 
For {17, 11}, possible difference is (|17 – 11| = 6), Minimum = 6 
For {5, 11}, possible difference is (|5 – 11| = 6), Minimum = 6 
Maximum(12, 6, 6) = 12 
Hence, the maximum of all minimum differences is 12.

Naive Approach: 
The simplest approach to solve this problem is to generate all possible subsequences of size B and find the minimum difference among all possible pairs. Finally, find the maximum among all the minimum differences. 



Time complexity: O(2N*N2) 
Auxiliary Space: O(N)

Efficient Approach: 
Follow the steps below to optimize the above approach using Binary Search:

  • Set the search space from 0 to maximum element in the array(maxm)
  • For each calculated mid, check whether it is possible to get a subsequence of size B with a minimum difference among any pair equal to mid.
  • If it is possible, then store mid in a variable and find a better answer in the right half and discard the left half of the mid
  • Otherwise, traverse the left half of the mid, to check if a subsequence with smaller minimum difference of pairs exists.
  • Finally, after termination of the binary search, print the highest mid for which any subsequence with minimum difference of pairs equal to mid was found.

Illustration: 
A[ ] = {1, 2, 3, 4, 5}, B = 3 
Search space: {0, 1, 2, 3, 4, 5} 
Steps involved in binary search are as follows:

  • start = 0, end = 5, mid = (0 + 5) / 2 = 2 
    Subsequence of size B with minimum difference of mid(= 2) is {1, 3, 5}. 
    Therefore, ans = 2
  • Now, traverse the right half. 
    start = mid +1 = 3, end = 5, mid = (3 + 5) / 2 = 4 
    Subsequence of size B with minimum difference of mid(= 4) is not possible. 
    Therefore, ans is still 2.
  • Now, traverse the left half 
    start = 3, end = mid – 1 = 3, mid = (3 + 3) / 2 = 3 
    Subsequence of size B with minimum difference of mid(= 3) is not possible. 
    Therefore, ans is still 2.
  • Again, traverse left half. 
    start = 3, end = mid – 1 = 2. 
    Since start exceeds end, binary search terminates.
  • Finally, the largest possible minimum difference is 2.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check a subsequence can
// be formed with min difference mid
bool can_place(int A[], int n,
               int B, int mid)
{
    int count = 1;
    int last_position = A[0];
 
    // If a subsequence of size B
    // with min diff = mid is possible
    // return true else false
    for (int i = 1; i < n; i++) {
 
        if (A[i] - last_position
            >= mid) {
            last_position = A[i];
            count++;
            if (count == B) {
                return true;
            }
        }
    }
    return false;
}
 
// Function to find the maximum of
// all minimum difference of pairs
// possible among the subsequence
int find_min_difference(int A[],
                        int n, int B)
{
 
    // Sort the Array
    sort(A, A + n);
 
    // Stores the boundaries
    // of the search space
    int s = 0;
    int e = A[n - 1] - A[0];
 
    // Store the answer
    int ans = 0;
 
    // Binary Search
    while (s <= e) {
 
        long long int mid = (s + e) / 2;
 
        // If subsequence can be formed
        // with min diff mid and size B
        if (can_place(A, n, B, mid)) {
            ans = mid;
 
            // Right half
            s = mid + 1;
        }
        else {
 
            // Left half
            e = mid - 1;
        }
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int A[] = { 1, 2, 3, 5 };
    int n = sizeof(A) / sizeof(A[0]);
    int B = 3;
 
    int min_difference
        = find_min_difference(A, n, B);
    cout << min_difference;
    return 0;
}

Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Function to check a subsequence can
// be formed with min difference mid
static boolean can_place(int A[], int n,
                         int B, int mid)
{
    int count = 1;
    int last_position = A[0];
 
    // If a subsequence of size B
    // with min diff = mid is possible
    // return true else false
    for(int i = 1; i < n; i++)
    {
        if (A[i] - last_position >= mid)
        {
            last_position = A[i];
            count++;
            if (count == B)
            {
                return true;
            }
        }
    }
    return false;
}
 
// Function to find the maximum of
// all minimum difference of pairs
// possible among the subsequence
static int find_min_difference(int A[],
                        int n, int B)
{
 
    // Sort the Array
    Arrays.sort(A);
 
    // Stores the boundaries
    // of the search space
    int s = 0;
    int e = A[n - 1] - A[0];
 
    // Store the answer
    int ans = 0;
 
    // Binary Search
    while (s <= e)
    {
        int mid = (s + e) / 2;
 
        // If subsequence can be formed
        // with min diff mid and size B
        if (can_place(A, n, B, mid))
        {
            ans = mid;
 
            // Right half
            s = mid + 1;
        }
        else
        {
             
            // Left half
            e = mid - 1;
        }
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int A[] = { 1, 2, 3, 5 };
    int n = A.length;
    int B = 3;
 
    int min_difference = find_min_difference(A, n, B);
     
    System.out.print(min_difference);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to implement
# the above approach
 
# Function to check a subsequence can
# be formed with min difference mid
def can_place(A, n, B, mid):
 
    count = 1
    last_position = A[0]
 
    # If a subsequence of size B
    # with min diff = mid is possible
    # return true else false
    for i in range(1, n):
        if (A[i] - last_position >= mid):
            last_position = A[i]
            count = count + 1
             
            if (count == B):
                return bool(True)
                 
    return bool(False)
 
# Function to find the maximum of
# all minimum difference of pairs
# possible among the subsequence
def find_min_difference(A, n, B):
 
    # Sort the Array
    A.sort()
 
    # Stores the boundaries
    # of the search space
    s = 0
    e = A[n - 1] - A[0]
 
    # Store the answer
    ans = 0
 
    # Binary Search
    while (s <= e):
        mid = (int)((s + e) / 2)
 
        # If subsequence can be formed
        # with min diff mid and size B
        if (can_place(A, n, B, mid)):
            ans = mid
 
            # Right half
            s = mid + 1
         
        else:
 
            # Left half
            e = mid - 1
     
    return ans
 
# Driver code
A = [ 1, 2, 3, 5 ]
n = len(A)
B = 3
 
min_difference = find_min_difference(A, n, B)
 
print(min_difference)
 
# This code is contributed by divyeshrabadiya07

C#




// C# program to implement
// the above approach
using System;
class GFG{
  
// Function to check a subsequence can
// be formed with min difference mid
static bool can_place(int[] A, int n,
                      int B, int mid)
{
    int count = 1;
    int last_position = A[0];
  
    // If a subsequence of size B
    // with min diff = mid is possible
    // return true else false
    for(int i = 1; i < n; i++)
    {
        if (A[i] - last_position >= mid)
        {
            last_position = A[i];
            count++;
            if (count == B)
            {
                return true;
            }
        }
    }
    return false;
}
  
// Function to find the maximum of
// all minimum difference of pairs
// possible among the subsequence
static int find_min_difference(int[] A,
                        int n, int B)
{
  
    // Sort the Array
    Array.Sort(A);
  
    // Stores the boundaries
    // of the search space
    int s = 0;
    int e = A[n - 1] - A[0];
  
    // Store the answer
    int ans = 0;
  
    // Binary Search
    while (s <= e)
    {
        int mid = (s + e) / 2;
  
        // If subsequence can be formed
        // with min diff mid and size B
        if (can_place(A, n, B, mid))
        {
            ans = mid;
  
            // Right half
            s = mid + 1;
        }
        else
        {
              
            // Left half
            e = mid - 1;
        }
    }
    return ans;
}
  
// Driver Code
public static void Main(string[] args)
{
    int[] A = { 1, 2, 3, 5 };
    int n = A.Length;
    int B = 3;
  
    int min_difference = find_min_difference(A, n, B);
      
    Console.Write(min_difference);
}
}
  
// This code is contributed by rock_cool

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Function to check a subsequence can
// be formed with min difference mid
function can_place(A, n, B, mid)
{
    let count = 1;
    let last_position = A[0];
 
    // If a subsequence of size B
    // with min diff = mid is possible
    // return true else false
    for(let i = 1; i < n; i++)
    {
        if (A[i] - last_position >= mid)
        {
            last_position = A[i];
            count++;
             
            if (count == B)
            {
                return true;
            }
        }
    }
    return false;
}
 
// Function to find the maximum of
// all minimum difference of pairs
// possible among the subsequence
function find_min_difference(A, n, B)
{
 
    // Sort the Array
    A.sort();
 
    // Stores the boundaries
    // of the search space
    let s = 0;
    let e = A[n - 1] - A[0];
 
    // Store the answer
    let ans = 0;
 
    // Binary Search
    while (s <= e)
    {
        let mid = parseInt((s + e) / 2, 10);
 
        // If subsequence can be formed
        // with min diff mid and size B
        if (can_place(A, n, B, mid))
        {
            ans = mid;
 
            // Right half
            s = mid + 1;
        }
        else
        {
             
            // Left half
            e = mid - 1;
        }
    }
    return ans;
}
     
// Driver code
let A = [ 1, 2, 3, 5 ];
let n = A.length;
let B = 3;
let min_difference = find_min_difference(A, n, B);
 
document.write(min_difference);
 
// This code is contributed by divyesh072019
 
</script>
Output: 
2

Time Complexity: O(NlogN) 
Auxiliary Space: O(1)
 

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :