Skip to content
Related Articles

Related Articles

Improve Article

Maximum number of teams of size K possible with each player from different country

  • Difficulty Level : Medium
  • Last Updated : 07 Aug, 2021

Given an array arr[] consisting of N positive integers and a  positive integer K such that there are N countries, each country has arr[i] players, the task is to find the maximum number of teams that can be formed by forming teams of size K such that each player in the team is from a different country.

Examples:

Input: N = 4, K = 3, arr[] = {4, 3, 5, 3}
Output: 5
Explanation:
Consider the countries are named A, B, C and D. The possible ways of forming the teams are {A, B, C}, {A, C, D}, {A, B, C}, {B, C, D}, {A, C, D} such that in each set there are no more than 1 person from a country.

Therefore, the total count teams formed is 5.

Input: N = 3, K = 2, arr[] = {2, 3, 4}
Output: 4
Explanation: 
Consider the countries are named A, B, C and D. The possible ways of forming the teams are {B, C}, {B, C}, {A, C}, ({A, B} or {A, C} or {B, C})  such that in each set there are no more than 1 person from a country.



Therefore, the total count teams formed is 4.

Approach: The given problem can be solved by using the Binary Search, the idea is to perform the Binary Search on the number of teams that can be formed. Let this variable be T. For each value of T, check if it is possible to form T teams from the given list of players from each country. T teams can be formed if the sum of the minimum of arr[i] or T for all i over the range [0, N – 1] is greater than equal to T*K. Follow the below steps to solve this problem:

  • Define a function, say isPossible(arr, mid, K) to check if a mid number of teams can be formed or not.
    • Initialize the variable sum as 0 to store the sum of array elements.
    • Iterate over a range [0, N] and perform the following tasks:
      • Add the value of a minimum of mid or arr[i] to the variable sum.
    • If the sum is greater than equal to mid*K, then return true. Otherwise, return false.
  • Initialize the variables, say lb and ub as 0 and 1e9 as the lower and upper bound of the number of teams that can be formed.
  • Iterate over a while loop till lb is less than equal to ub and perform the following steps:
    • Initialize the variable, say mid as the average of ub and lb.
    • Call the function isPossible(arr, mid, K) and if the function returns true, then check for the upper part of the range. Otherwise, check for the lower part of the range.
  • After performing the above steps, print the value of mid as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find if T number of teams
// can be formed or not
bool is_possible(vector<int>& teams,
                 int T, int k)
{
    // Store the sum of array elements
    int sum = 0;
 
    // Traverse the array teams[]
    for (int i = 0; i < teams.size(); i++) {
        sum += min(T, teams[i]);
    }
 
    // Required Condition
    return (sum >= (T * k));
}
 
// Function to find the maximum number
// of teams possible
int countOfTeams(vector<int>& teams_list,
                 int N, int K)
{
    // Lower and Upper part of the range
    int lb = 0, ub = 1e9;
 
    // Perform the Binary Search
    while (lb <= ub) {
 
        // Find the value of mid
        int mid = lb + (ub - lb) / 2;
 
        // Perform the Binary Search
        if (is_possible(teams_list, mid, K)) {
 
            if (!is_possible(
                    teams_list, mid + 1, K)) {
                return mid;
            }
 
            // Otherwise, update the
            // search range
            else {
                lb = mid + 1;
            }
        }
 
        // Otherwise, update the
        // search range
        else {
            ub = mid - 1;
        }
    }
    return 0;
}
 
// Driver Code
int main()
{
    vector<int> arr = { 2, 3, 4 };
    int K = 2;
    int N = arr.size();
    cout << countOfTeams(arr, N, K);
 
    return 0;
}

Java




// Java program for the above approach
class GFG {
 
    // Function to find if T number of teams
    // can be formed or not
    public static boolean is_possible(int[] teams, int T, int k)
    {
       
        // Store the sum of array elements
        int sum = 0;
 
        // Traverse the array teams[]
        for (int i = 0; i < teams.length; i++) {
            sum += Math.min(T, teams[i]);
        }
 
        // Required Condition
        return (sum >= (T * k));
    }
 
    // Function to find the maximum number
    // of teams possible
    public static int countOfTeams(int[] teams_list, int N, int K)
    {
       
        // Lower and Upper part of the range
        int lb = 0;
        double ub = 1e9;
 
        // Perform the Binary Search
        while (lb <= ub) {
 
            // Find the value of mid
            int mid = lb + (int) (ub - lb) / 2;
 
            // Perform the Binary Search
            if (is_possible(teams_list, mid, K)) {
 
                if (!is_possible(teams_list, mid + 1, K)) {
                    return mid;
                }
 
                // Otherwise, update the
                // search range
                else {
                    lb = mid + 1;
                }
            }
 
            // Otherwise, update the
            // search range
            else {
                ub = mid - 1;
            }
        }
        return 0;
    }
 
    // Driver Code
    public static void main(String args[]) {
        int[] arr = { 2, 3, 4 };
        int K = 2;
        int N = arr.length;
        System.out.println(countOfTeams(arr, N, K));
 
    }
}
 
// This code is contributed by _saurabh_jaiswal.

Python3




# Python 3 program for the above approach
 
# Function to find if T number of teams
# can be formed or not
def is_possible(teams, T, k):
    # Store the sum of array elements
    sum = 0
 
    # Traverse the array teams[]
    for i in range(len(teams)):
        sum += min(T, teams[i])
 
    # Required Condition
    return (sum >= (T * k))
 
# Function to find the maximum number
# of teams possible
 
def countOfTeams(teams_list, N, K):
    # Lower and Upper part of the range
    lb = 0
    ub = 1000000000
 
    # Perform the Binary Search
    while (lb <= ub):
 
        # Find the value of mid
        mid = lb + (ub - lb) // 2
 
        # Perform the Binary Search
        if (is_possible(teams_list, mid, K)):
            if (is_possible(teams_list, mid + 1, K)==False):
                return mid
 
            # Otherwise, update the
            # search range
            else:
                lb = mid + 1
 
        # Otherwise, update the
        # search range
        else:
            ub = mid - 1
    return 0
 
# Driver Code
if __name__ == '__main__':
    arr = [2, 3, 4]
    K = 2
    N = len(arr)
    print(countOfTeams(arr, N, K))
     
    # This code is contributed by ipg2016107.

C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find if T number of teams
// can be formed or not
public static bool is_possible(int[] teams,
                               int T, int k)
{
     
    // Store the sum of array elements
    int sum = 0;
 
    // Traverse the array teams[]
    for(int i = 0; i < teams.Length; i++)
    {
        sum += Math.Min(T, teams[i]);
    }
 
    // Required Condition
    return (sum >= (T * k));
}
 
// Function to find the maximum number
// of teams possible
public static int countOfTeams(int[] teams_list,
                               int N, int K)
{
     
    // Lower and Upper part of the range
    int lb = 0;
    double ub = 1e9;
 
    // Perform the Binary Search
    while (lb <= ub)
    {
         
        // Find the value of mid
        int mid = lb + (int) (ub - lb) / 2;
 
        // Perform the Binary Search
        if (is_possible(teams_list, mid, K))
        {
            if (!is_possible(teams_list, mid + 1, K))
            {
                return mid;
            }
 
            // Otherwise, update the
            // search range
            else
            {
                lb = mid + 1;
            }
        }
 
        // Otherwise, update the
        // search range
        else
        {
            ub = mid - 1;
        }
    }
    return 0;
}
 
// Driver Code
public static void Main(String[] args)
{
    int[] arr = { 2, 3, 4 };
    int K = 2;
    int N = arr.Length;
     
    Console.WriteLine(countOfTeams(arr, N, K));
}
}
 
// This code is contributed by code_hunt

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find if T number of teams
// can be formed or not
function is_possible(teams, T, k) {
  // Store the sum of array elements
  let sum = 0;
 
  // Traverse the array teams[]
  for (let i = 0; i < teams.length; i++) {
    sum += Math.min(T, teams[i]);
  }
 
  // Required Condition
  return sum >= T * k;
}
 
// Function to find the maximum number
// of teams possible
function countOfTeams(teams_list, N, K) {
  // Lower and Upper part of the range
  let lb = 0,
    ub = 1e9;
 
  // Perform the Binary Search
  while (lb <= ub) {
    // Find the value of mid
    let mid = Math.floor(lb + (ub - lb) / 2);
 
    // Perform the Binary Search
    if (is_possible(teams_list, mid, K)) {
      if (!is_possible(teams_list, mid + 1, K)) {
        return mid;
      }
 
      // Otherwise, update the
      // search range
      else {
        lb = mid + 1;
      }
    }
 
    // Otherwise, update the
    // search range
    else {
      ub = mid - 1;
    }
  }
  return 0;
}
 
// Driver Code
 
let arr = [2, 3, 4];
let K = 2;
let N = arr.length;
document.write(countOfTeams(arr, N, K));
 
</script>
Output: 
4

 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :