Maximum number of subsets an array can be split into such that product of their minimums with size of subsets is at least K
Given an array arr[] consisting of N integers and an integer K, the task is to find the maximum number of disjoint subsets that the given array can be split into such that the product of the minimum element of each subset with the size of the subset is at least K.
Examples:
Input: arr[] = {7, 11, 2, 9, 5}, K = 10
Output: 2
Explanation:
All such disjoint subsets possible are:
Subset {11}: Product of minimum and size of the subset = 11 * 1 = 11 ( > 10).
Subset {5, 9, 7}: Product of minimum and size of the subset = 5 * 3 = 15( > 10).
Therefore, the total number of subsets formed is 2.Input: arr[] = {1, 3, 3, 7}, K = 12
Output: 0
Approach: The given problem can be solved greedily based on the following observations:
- As given in the problem statement the product of the minimum element of the formed subset and the length of the subset must be at least K, so to maximize the number of subsets, the maximum element of the array can be grouped to the minimum element of the subset.
- So the idea is to maximize the minimum element of the subset one by one, which maximizes the count of the subset.
Follow the steps below to solve the problem:
- Initialize a variable, say count as 0, to store the maximum number of subsets formed.
- Initialize a variable, say length as 0, to store the length of the subset.
- Sort the array in descending order.
- Traverse the given array arr[] and perform the following steps:
- Increment the value of length by 1.
- If the value of (arr[i] * length) is greater than K, then increment the value of the count by 1 and update the value of length as 0.
- After completing the above steps, print the value of count as the resultant maximum number of subsets formed.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum number // of subsets possible such that // product of their minimums and the // size of subsets are at least K int maximumSubset( int arr[], int N, int K) { // Sort the array in // descending order sort(arr, arr + N, greater< int >()); // Stores the size of // the current subset int len = 0; // Stores the count of subsets int ans = 0; // Traverse the array arr[] for ( int i = 0; i < N; i++) { // Increment length of the // subsets by 1 len++; // If arr[i] * len >= K if (arr[i] * len >= K) { // Increment ans by one ans++; // Update len len = 0; } } // Return the maximum possible // subsets formed return ans; } // Driver Code int main() { int arr[] = { 7, 11, 2, 9, 5 }; int K = 10; int N = sizeof (arr) / sizeof (arr[0]); cout << maximumSubset(arr, N, K); return 0; } |
Java
import java.util.*; public class GFG { // Function to reverse the sorted array public static void reverse( int [] arr) { // Length of the array int n = arr.length; // Swapping the first half elements with last half // elements for ( int i = 0 ; i < n / 2 ; i++) { // Storing the first half elements temporarily int temp = arr[i]; // Assigning the first half to the last half arr[i] = arr[n - i - 1 ]; // Assigning the last half to the first half arr[n - i - 1 ] = temp; } } // Function to find the maximum number // of subsets possible such that // product of their minimums and the // size of subsets are at least K public static int maximumSubset( int arr[], int N, int K) { // Sort the array in // descending order Arrays.sort(arr); reverse(arr); // Stores the size of // the current subset int len = 0 ; // Stores the count of subsets int ans = 0 ; // Traverse the array arr[] for ( int i = 0 ; i < N; i++) { // Increment length of the // subsets by 1 len++; // If arr[i] * len >= K if (arr[i] * len >= K) { // Increment ans by one ans++; // Update len len = 0 ; } } // Return the maximum possible // subsets formed return ans; } // Driver Code public static void main(String args[]) { int arr[] = { 7 , 11 , 2 , 9 , 5 }; int K = 10 ; int N =arr.length; System.out.println(maximumSubset(arr, N, K)); } } // This code is contributed by SoumikMondal |
Python3
# Python 3 program for the above approach # Function to find the maximum number # of subsets possible such that # product of their minimums and the # size of subsets are at least K def maximumSubset(arr, N, K): # Sort the array in # descending order arr.sort(reverse = True ) # Stores the size of # the current subset len = 0 # Stores the count of subsets ans = 0 # Traverse the array arr[] for i in range (N): # Increment length of the # subsets by 1 len + = 1 # If arr[i] * len >= K if (arr[i] * len > = K): # Increment ans by one ans + = 1 # Update len len = 0 # Return the maximum possible # subsets formed return ans # Driver Code if __name__ = = "__main__" : arr = [ 7 , 11 , 2 , 9 , 5 ] K = 10 N = len (arr) print (maximumSubset(arr, N, K)) # This code is contributed by ukasp. |
C#
using System; public class GFG { // Function to reverse the sorted array public static void reverse( int [] arr) { // Length of the array int n = arr.Length; // Swapping the first half elements with last half // elements for ( int i = 0; i < n / 2; i++) { // Storing the first half elements temporarily int temp = arr[i]; // Assigning the first half to the last half arr[i] = arr[n - i - 1]; // Assigning the last half to the first half arr[n - i - 1] = temp; } } // Function to find the maximum number // of subsets possible such that // product of their minimums and the // size of subsets are at least K public static int maximumSubset( int []arr, int N, int K) { // Sort the array in // descending order Array.Sort(arr); reverse(arr); // Stores the size of // the current subset int len = 0; // Stores the count of subsets int ans = 0; // Traverse the array []arr for ( int i = 0; i < N; i++) { // Increment length of the // subsets by 1 len++; // If arr[i] * len >= K if (arr[i] * len >= K) { // Increment ans by one ans++; // Update len len = 0; } } // Return the maximum possible // subsets formed return ans; } // Driver Code public static void Main(String []args) { int []arr = { 7, 11, 2, 9, 5 }; int K = 10; int N = arr.Length; Console.WriteLine(maximumSubset(arr, N, K)); } } // This code is contributed by aashish1995. |
Javascript
<script> // JavaScript program to implement // the above approach // Function to reverse the sorted array function reverse(arr) { // Length of the array let n = arr.length; // Swapping the first half elements with last half // elements for (let i = 0; i < n / 2; i++) { // Storing the first half elements temporarily let temp = arr[i]; // Assigning the first half to the last half arr[i] = arr[n - i - 1]; // Assigning the last half to the first half arr[n - i - 1] = temp; } } // Function to find the maximum number // of subsets possible such that // product of their minimums and the // size of subsets are at least K function maximumSubset(arr, N, K) { // Sort the array in // descending order arr.sort(); arr.reverse(); // Stores the size of // the current subset let len = 0; // Stores the count of subsets let ans = 0; // Traverse the array arr[] for (let i = 0; i < N; i++) { // Increment length of the // subsets by 1 len++; // If arr[i] * len >= K if (arr[i] * len >= K) { // Increment ans by one ans++; // Update len len = 0; } } // Return the maximum possible // subsets formed return ans; } // Driver code let arr = [ 7, 11, 2, 9, 5 ]; let K = 10; let N =arr.length; document.write(maximumSubset(arr, N, K)); </script> |
2
Time Complexity: O(N * log N)
Auxiliary Space: O(1)
Please Login to comment...