Related Articles
Maximum number of splits of a binary number
• Last Updated : 11 Nov, 2019

Given a binary string S, the task is to find the maximum number of parts that you can split it into such that every part is divisible by 2. If the string can’t be split satisfying the given conditions then print -1.

Examples:

Input: S = “100”
Output: 2
The splits are as follows:
“10” ans “0”.

Input: S = “110”
Output: 1

Approach: This problem can be solved greedily, start from the left end and put a cut at an index j such that j is the smallest index for which sub-string upto j is divisible by 2. Now, continue this step with the rest of the left-over string. It is also known that any binary number ending with a 0 is divisible by 2. Thus, put a cut after each and every zero and the answer will be equal to the number of zeros in the string. The only case where the answer is not possible is when the given string is odd i.e. no matter how cuts are made on the string, the last split part will always be odd.

Below is the implementation of the above approach:

## C++

 // C++ implementation of the approach #include using namespace std;    // Function to return the required count int cntSplits(string s) {     // If the splitting is not possible     if (s[s.size() - 1] == '1')         return -1;        // To store the final ans     int ans = 0;        // Counting the number of zeros     for (int i = 0; i < s.size(); i++)         ans += (s[i] == '0');        // Return the final answer     return ans; }    // Driver code int main() {     string s = "10010";        cout << cntSplits(s);        return 0; }

## Java

 // Java implementation of the approach class GFG {    // Function to return the required count static int cntSplits(String s) {     // If the splitting is not possible     if (s.charAt(s.length() - 1) == '1')         return -1;        // To store the final ans     int ans = 0;        // Counting the number of zeros     for (int i = 0; i < s.length(); i++)         ans += (s.charAt(i) == '0') ? 1 : 0;        // Return the final answer     return ans; }    // Driver code public static void main(String []args)  {     String s = "10010";        System.out.println(cntSplits(s)); } }    // This code is contributed by 29AjayKumar

## Python3

 # Python3 implementation of the approach     # Function to return the required count  def cntSplits(s) :        # If the splitting is not possible      if (s[len(s) - 1] == '1') :         return -1;         # To store the count of zeroes      ans = 0;         # Counting the number of zeroes      for i in range(len(s)) :         ans += (s[i] == '0');         # Return the final answer      return ans ;     # Driver code  if __name__ == "__main__" :         s = "10010";         print(cntSplits(s));        # This code is contributed by AnkitRai01

## C#

 // C# implementation of the approach using System;                        class GFG {    // Function to return the required count static int cntSplits(String s) {     // If the splitting is not possible     if (s[s.Length - 1] == '1')         return -1;        // To store the final ans     int ans = 0;        // Counting the number of zeros     for (int i = 0; i < s.Length; i++)         ans += (s[i] == '0') ? 1 : 0;        // Return the final answer     return ans; }    // Driver code public static void Main(String []args)  {     String s = "10010";        Console.WriteLine(cntSplits(s)); } }    // This code is contributed by Rajput-Ji

Output:

3

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :