Skip to content
Related Articles

Related Articles

Improve Article

Maximum number of removals of given subsequence from a string

  • Last Updated : 26 May, 2021
Geek Week

Given string str, the task is to count the maximum number of possible operations that can be performed on str. An operation consists of taking a sub-sequence ‘gks’ from the string and removing it from the string.

Examples: 

Input: str = "ggkssk"
Output: 1
After 1st operation: str = "gsk"
No further operation can be performed.

Input: str = "kgs"
Output: 0

Approach:  

  1. Take three variables g, gk, and gks which will store the occurrence of the sub-sequences ‘g’, ‘gk’, and ‘gks’ respectively.
  2. Traverse the string character by character: 
    • If str[i] = ‘g’ then update g = g + 1.
    • If str[i] = ‘k’ and g > 0 then update g = g – 1 and gk = gk + 1 as previously found ‘g’ now contributes to the sub-sequence ‘gk’ along with the current ‘k’.
    • Similarly, if str[i] = ‘s’ and gk > 0 then update gk = gk – 1 and gks = gks + 1.
  3. Print the value of gks in the end.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return max possible operation
// of the given type that can be performed on str
int maxOperations(string str)
{
    int i, g, gk, gks;
    i = g = gk = gks = 0;
    for (i = 0; i < str.length(); i++) {
        if (str[i] == 'g') {
 
            // Increment count of sub-sequence 'g'
            g++;
        }
        else if (str[i] == 'k') {
 
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if (g > 0) {
                g--;
                gk++;
            }
        }
        else if (str[i] == 's') {
 
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if (gk > 0) {
                gk--;
                gks++;
            }
        }
    }
 
    // Return the count of sub-sequence 'gks'
    return gks;
}
 
// Driver code
int main()
{
    string a = "ggkssk";
    cout << maxOperations(a);
    return 0;
}

Java




// Java implementation of the approach
 
class GFG
{
// Function to return max possible
// operation of the given type that
// can be performed on str
static int maxOperations(String str)
{
    int i, g, gk, gks;
    i = g = gk = gks = 0;
    for (i = 0; i < str.length(); i++)
    {
        if (str.charAt(i) == 'g')
        {
 
            // Increment count of sub-sequence 'g'
            g++;
        }
        else if (str.charAt(i) == 'k')
        {
 
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if (g > 0) {
                g--;
                gk++;
            }
        }
        else if (str.charAt(i) == 's')
        {
 
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if (gk > 0)
            {
                gk--;
                gks++;
            }
        }
    }
 
    // Return the count of sub-sequence 'gks'
    return gks;
}
 
// Driver code
public static void main(String args[])
{
    String a = "ggkssk";
    System.out.print(maxOperations(a));
}
}
 
// This code is contributed
// by Akanksha Rai

Python 3




# Python 3 implementation of the approach
 
# Function to return max possible operation
# of the given type that can be performed
# on str
def maxOperations( str):
 
    i, g, gk, gks = 0, 0, 0, 0
    for i in range(len(str)) :
        if (str[i] == 'g') :
 
            # Increment count of sub-sequence 'g'
            g += 1
         
        elif (str[i] == 'k') :
 
            # Increment count of sub-sequence
            # 'gk', if 'g' is available
            if (g > 0) :
                g -= 1
                gk += 1
             
        elif (str[i] == 's') :
 
            # Increment count of sub-sequence 'gks'
            # if sub-sequence 'gk' appeared previously
            if (gk > 0) :
                gk -= 1
                gks += 1
 
    # Return the count of sub-sequence 'gks'
    return gks
 
# Driver code
if __name__ == "__main__":
     
    a = "ggkssk"
    print(maxOperations(a))
 
# This code is contributed by ita_c

C#




// C# implementation of the approach
using System ;
 
public class GFG{
    // Function to return max possible operation
    // of the given type that can be performed on str
    static int maxOperations(string str)
    {
        int i, g, gk, gks;
        i = g = gk = gks = 0;
        for (i = 0; i < str.Length; i++) {
            if (str[i] == 'g') {
     
                // Increment count of sub-sequence 'g'
                g++;
            }
            else if (str[i] == 'k') {
     
                // Increment count of sub-sequence 'gk'
                // if 'g' is available
                if (g > 0) {
                    g--;
                    gk++;
                }
            }
            else if (str[i] == 's') {
     
                // Increment count of sub-sequence 'gks'
                // if sub-sequence 'gk' appeared previously
                if (gk > 0) {
                    gk--;
                    gks++;
                }
            }
        }
     
        // Return the count of sub-sequence 'gks'
        return gks;
    }
     
    // Driver code
    public static void Main()
    {
        string a = "ggkssk";
        Console.WriteLine(maxOperations(a)) ;
     
    }
     
}

PHP




<?php
// PHP implementation of the approach
 
// Function to return max possible operation
// of the given type that can be performed on str
function maxOperations($str)
{
    $i = $g = $gk = $gks = 0;
    for ($i = 0; $i < strlen($str); $i++)
    {
        if ($str[$i] == 'g')
        {
 
            // Increment count of sub-sequence 'g'
            $g++;
        }
        else if ($str[$i] == 'k')
        {
 
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if ($g > 0)
            {
                $g--;
                $gk++;
            }
        }
        else if ($str[$i] == 's')
        {
 
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if ($gk > 0)
            {
                $gk--;
                $gks++;
            }
        }
    }
 
    // Return the count of sub-sequence 'gks'
    return $gks;
}
 
// Driver code
$a = "ggkssk";
echo maxOperations($a);
 
// This code is contributed
// by Akanksha Rai
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return max possible
// operation of the given type that
// can be performed on str
function maxOperations(str)
{
    let i, g, gk, gks;
    i = g = gk = gks = 0;
    for (i = 0; i < str.length; i++)
    {
        if (str[i] == 'g')
        {
   
            // Increment count of sub-sequence 'g'
            g++;
        }
        else if (str[i] == 'k')
        {
   
            // Increment count of sub-sequence 'gk'
            // if 'g' is available
            if (g > 0) {
                g--;
                gk++;
            }
        }
        else if (str[i] == 's')
        {
   
            // Increment count of sub-sequence 'gks'
            // if sub-sequence 'gk' appeared previously
            if (gk > 0)
            {
                gk--;
                gks++;
            }
        }
    }
   
    // Return the count of sub-sequence 'gks'
    return gks;
}
 
// Driver code
let a = "ggkssk";
document.write(maxOperations(a));
 
 
// This code is contributed by avanitrachhadiya2155
</script>
Output: 
1

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :