# Maximum number of multiples in an array before any element

Given an array arr[], the task is to find the maximum number of indices j < i such that (arr[j] % arr[i]) = 0 among all the array elements.

Example:

Input: arr[] = {8, 1, 28, 4, 2, 6, 7}
Output: 3
No of multiples for each element before itself –
N(8) = 0 ()
N(1) = 1 (8)
N(28) = 0 ()
N(4) = 2 (28, 8)
N(2) = 3 (4, 28, 8)
N(6) = 0 ()
N(7) = 1 (28)
Maximum out of these multiples is – 3

Input: arr[] = {8, 12, 56, 32, 10, 3, 2, 4}
Output: 5

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

1. Use a map to store all the divisors of each array element.
2. Generate all the divisors of an element in sqrt(n) time using the approach discussed in this article.
3. Now, take the maximum of all the stored divisors for each element and update it.

Below is the implementation of the above approach:

## CPP

 `// C++ implementation of the approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `const` `int` `MAX = 100000; ` ` `  `// Map to store the divisor count ` `int` `divisors[MAX]; ` ` `  `// Function to generate the divisors ` `// of all the array elements ` `int` `generateDivisors(``int` `n) ` `{ ` `    ``for` `(``int` `i = 1; i <= ``sqrt``(n); i++) { ` `        ``if` `(n % i == 0) { ` `            ``if` `(n / i == i) { ` `                ``divisors[i]++; ` `            ``} ` `            ``else` `{ ` `                ``divisors[i]++; ` `                ``divisors[n / i]++; ` `            ``} ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the maximum number ` `// of multiples in an array before it ` `int` `findMaxMultiples(``int``* arr, ``int` `n) ` `{ ` `    ``// To store the maximum divisor count ` `    ``int` `ans = 0; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// Update ans if more number ` `        ``// of divisors are found ` `        ``ans = max(divisors[arr[i]], ans); ` ` `  `        ``// Generating all the divisors of ` `        ``// the next element of the array ` `        ``generateDivisors(arr[i]); ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 8, 1, 28, 4, 2, 6, 7 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``); ` ` `  `    ``cout << findMaxMultiples(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `static` `int` `MAX = ``100000``; ` ` `  `// Map to store the divisor count ` `static` `int` `[]divisors = ``new` `int``[MAX]; ` ` `  `// Function to generate the divisors ` `// of all the array elements ` `static` `void` `generateDivisors(``int` `n) ` `{ ` `    ``for` `(``int` `i = ``1``; i <= Math.sqrt(n); i++)  ` `    ``{ ` `        ``if` `(n % i == ``0``)  ` `        ``{ ` `            ``if` `(n / i == i) ` `            ``{ ` `                ``divisors[i]++; ` `            ``} ` `            ``else`  `            ``{ ` `                ``divisors[i]++; ` `                ``divisors[n / i]++; ` `            ``} ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the maximum number ` `// of multiples in an array before it ` `static` `int` `findMaxMultiples(``int` `[]arr, ``int` `n) ` `{ ` `    ``// To store the maximum divisor count ` `    ``int` `ans = ``0``; ` ` `  `    ``for` `(``int` `i = ``0``; i < n; i++) ` `    ``{ ` ` `  `        ``// Update ans if more number ` `        ``// of divisors are found ` `        ``ans = Math.max(divisors[arr[i]], ans); ` ` `  `        ``// Generating all the divisors of ` `        ``// the next element of the array ` `        ``generateDivisors(arr[i]); ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `arr[] = { ``8``, ``1``, ``28``, ``4``, ``2``, ``6``, ``7` `}; ` `    ``int` `n = arr.length; ` ` `  `    ``System.out.print(findMaxMultiples(arr, n)); ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

## Python3

 `# Python3 implementation of the approach ` `from` `math ``import` `ceil,sqrt ` `MAX` `=` `100000` ` `  `# Map to store the divisor count ` `divisors ``=` `[``0``] ``*` `MAX` ` `  `# Function to generate the divisors ` `# of all the array elements ` `def` `generateDivisors(n): ` `    ``for` `i ``in` `range``(``1``,ceil(sqrt(n)) ``+` `1``): ` `        ``if` `(n ``%` `i ``=``=` `0``): ` `            ``if` `(n ``/``/` `i ``=``=` `i): ` `                ``divisors[i]``+``=``1` `            ``else``: ` `                ``divisors[i] ``+``=` `1` `                ``divisors[n ``/``/` `i] ``+``=` `1` ` `  `# Function to find the maximum number ` `# of multiples in an array before it ` `def` `findMaxMultiples(arr, n): ` `     `  `    ``# To store the maximum divisor count ` `    ``ans ``=` `0` `    ``for` `i ``in` `range``(n): ` ` `  `        ``# Update ans if more number ` `        ``# of divisors are found ` `        ``ans ``=` `max``(divisors[arr[i]], ans) ` ` `  `        ``# Generating all the divisors of ` `        ``# the next element of the array ` `        ``generateDivisors(arr[i]) ` `    ``return` `ans ` ` `  `# Driver code ` `arr ``=` `[``8``, ``1``, ``28``, ``4``, ``2``, ``6``, ``7``] ` `n ``=` `len``(arr) ` ` `  `print``(findMaxMultiples(arr, n)) ` ` `  `# This code is contributed by mohit kumar 29 `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` ` `  `static` `int` `MAX = 100000; ` ` `  `// Map to store the divisor count ` `static` `int` `[]divisors = ``new` `int``[MAX]; ` ` `  `// Function to generate the divisors ` `// of all the array elements ` `static` `void` `generateDivisors(``int` `n) ` `{ ` `    ``for` `(``int` `i = 1; i <= Math.Sqrt(n); i++)  ` `    ``{ ` `        ``if` `(n % i == 0)  ` `        ``{ ` `            ``if` `(n / i == i) ` `            ``{ ` `                ``divisors[i]++; ` `            ``} ` `            ``else` `            ``{ ` `                ``divisors[i]++; ` `                ``divisors[n / i]++; ` `            ``} ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the maximum number ` `// of multiples in an array before it ` `static` `int` `findMaxMultiples(``int` `[]arr, ``int` `n) ` `{ ` `    ``// To store the maximum divisor count ` `    ``int` `ans = 0; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) ` `    ``{ ` ` `  `        ``// Update ans if more number ` `        ``// of divisors are found ` `        ``ans = Math.Max(divisors[arr[i]], ans); ` ` `  `        ``// Generating all the divisors of ` `        ``// the next element of the array ` `        ``generateDivisors(arr[i]); ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `    ``int` `[]arr = { 8, 1, 28, 4, 2, 6, 7 }; ` `    ``int` `n = arr.Length; ` ` `  `    ``Console.Write(findMaxMultiples(arr, n)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

Output:

```3
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Programmer

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.