Skip to content
Related Articles

Related Articles

Improve Article
Maximum number of edges in Bipartite graph
  • Difficulty Level : Medium
  • Last Updated : 15 Apr, 2021

Given an integer N which represents the number of Vertices. The Task is to find the maximum number of edges possible in a Bipartite graph of N vertices.
Bipartite Graph: 
 

  1. A Bipartite graph is one which is having 2 sets of vertices.
  2. The set are such that the vertices in the same set will never share an edge between them.

Examples: 
 

Input: N = 10 
Output: 25 
Both the sets will contain 5 vertices and every vertex of first set 
will have an edge to every other vertex of the second set 
i.e. total edges = 5 * 5 = 25
Input: N = 9 
Output: 20 
 

 

Approach: The number of edges will be maximum when every vertex of a given set has an edge to every other vertex of the other set i.e. edges = m * n where m and n are the number of edges in both the sets. in order to maximize the number of edges, m must be equal to or as close to n as possible. Hence, the maximum number of edges can be calculated with the formula, 
 



Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum number
// of edges possible in a Bipartite
// graph with N vertices
int maxEdges(int N)
{
    int edges = 0;
 
    edges = floor((N * N) / 4);
 
    return edges;
}
 
// Driver code
int main()
{
    int N = 5;
    cout << maxEdges(N);
 
    return 0;
}

Java




// Java implementation of the approach
 
class GFG {
 
    // Function to return the maximum number
    // of edges possible in a Bipartite
    // graph with N vertices
    public static double maxEdges(double N)
    {
        double edges = 0;
 
        edges = Math.floor((N * N) / 4);
 
        return edges;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        double N = 5;
        System.out.println(maxEdges(N));
    }
}
 
// This code is contributed by Naman_Garg.

Python3




# Python3 implementation of the approach
 
# Function to return the maximum number
# of edges possible in a Bipartite
# graph with N vertices
def maxEdges(N) :
 
    edges = 0;
 
    edges = (N * N) // 4;
 
    return edges;
 
# Driver code
if __name__ == "__main__" :
     
    N = 5;
    print(maxEdges(N));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG {
 
    // Function to return the maximum number
    // of edges possible in a Bipartite
    // graph with N vertices
    static double maxEdges(double N)
    {
        double edges = 0;
 
        edges = Math.Floor((N * N) / 4);
 
        return edges;
    }
 
    // Driver code
    static public void Main()
    {
        double N = 5;
        Console.WriteLine(maxEdges(N));
    }
}
 
// This code is contributed by jit_t.

PHP




<?php
// PHP implementation of the approach
 
// Function to return the maximum number
// of edges possible in a Bipartite
// graph with N vertices
 
function maxEdges($N)
{
    $edges = 0;
 
    $edges = floor(($N * $N) / 4);
 
    return $edges;
}
 
// Driver code
    $N = 5;
    echo maxEdges($N);
 
// This code is contributed by ajit.
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the maximum number
// of edges possible in a Bipartite
// graph with N vertices
function maxEdges(N)
{
    var edges = 0;
 
    edges = Math.floor((N * N) / 4);
 
    return edges;
}
 
// Driver code
var N = 5;
document.write( maxEdges(N));
 
</script>
Output: 
6

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :