Given a dice with m-faces. The first face of the dice contains a dot, the second one contains two dots, and so on, the m-th face contains m dots. Each face appears with a probability
. Our task is to calculate the expected maximum number of dots after tossing the dice
times.
Examples:
Input: 2 2
Output: 1.750000000000
Here the dice includes {1, 2}.
So, the sample space of throwing the dice two times = 
{(1, 2), (1, 1), (2, 1), (2, 2)}
For (1, 2)–> maximum=2
For (1, 1)–> maximum=1
For (2, 2)–> maximum=2
For (2, 1)–> maximum=2
The probability of each outcome is 0.25,
that is, expectation equals to
(2+1+2+2)*(0.25) = 7/4 = 1.750000000000
Input: 6 3
Output: 4.958333333333
Approach:
The key observation in this problem is that no. of times a number can occur a maximum of times depending upon its previous number.
For i-th number, it will be
.
Take m = 6, n = 2 as an instance.
Total numbers with a maximum =6 are equal to
.
The total numbers with a maximum, 5 are equal to
.
Similarly, we can find out for 4,3,2, and 1.
6 6 6 6 6 6
5 5 5 5 5 6
4 4 4 4 5 6
3 3 3 4 5 6
2 2 3 4 5 6
1 2 3 4 5 6
Enumerate the maximum number, the distribution will be an n-dimensional super-cube with m-length-side. Each layer will be a large cube minus a smaller cube.
So, our answer will be the sum of all i-th elements from 1 to m given by:

Calculating
may cause overflow, so we could move the divisor into the sum and calculate
instead.
C++
#include <bits/stdc++.h>
using namespace std;
double expect( double m, double n)
{
double ans = 0.0, i;
for (i = m; i; i--)
ans += ( pow (i / m, n) - pow ((i - 1) / m, n)) * i;
return ans;
}
int main()
{
double m = 6, n = 3;
cout << expect(m, n);
return 0;
}
|
Java
class GFG
{
static double expect( double m, double n)
{
double ans = 0.0 , i;
for (i = m; i > 0 ; i--)
ans += (Math.pow(i / m, n) -
Math.pow((i - 1 ) / m, n)) * i;
return ans;
}
public static void main(String[] args)
{
double m = 6 , n = 3 ;
System.out.println(String.format( "%.5f" ,
expect(m, n)));
}
}
|
Python3
def expect(m,n) :
ans = 0.0
i = m
while (i):
ans + = ( pow (i / m, n) - pow ((i - 1 ) / m, n)) * i
i - = 1
return ans
if __name__ = = "__main__" :
m,n = 6 , 3
print (expect(m,n))
|
C#
using System;
class GFG
{
static double expect( double m, double n)
{
double ans = 0.0, i;
for (i = m; i > 0; i--)
ans += (Math.Pow(i / m, n) -
Math.Pow((i - 1) / m, n)) * i;
return ans;
}
public static void Main()
{
double m = 6, n = 3;
Console.WriteLine(expect(m, n));
}
}
|
PHP
<?php
function expect( $m , $n )
{
$ans = 0.0;
for ( $i = $m ; $i ; $i --)
$ans += (pow( $i / $m , $n ) -
pow(( $i - 1) / $m , $n )) * $i ;
return $ans ;
}
$m = 6;
$n = 3;
echo expect( $m , $n );
?>
|
Javascript
<script>
function expect(m,n)
{
let ans = 0.0, i;
for (i = m; i > 0; i--)
ans += (Math.pow(i / m, n) -
Math.pow((i - 1) / m, n)) * i;
return ans;
}
let m = 6, n = 3;
document.write(expect(m, n).toFixed(5))
</script>
|
Time Complexity: O(m * log n), where m and n are given inputs.
Auxiliary Space: O(1), as constant space is used.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
06 Sep, 2022
Like Article
Save Article