# Maximum number of consecutive 1’s in binary representation of all the array elements

Given an array arr[] of N elements, the task is to find the maximum number of consecutive 1’s in the binary representation of an element among all the elements of the given array.

Examples:

Input: arr[] = {1, 2, 3, 4}
Output: 2
Binary(1) = 01
Binary(2) = 10
Binary(3) = 11
Binary(4) = 100

Input: arr[] = {10, 15, 37, 89}
Output: 4

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: An approach to find the count of maximum consecutive 1s in the binary representation of a number has been discussed in this article. The same approach can be used to find the same for all the elements of the given array and the maximum among those values is the required answer.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count of ` `// maximum consecutive 1s in the ` `// binary represntation of x ` `int` `maxConsecutiveOnes(``int` `x) ` `{ ` `    ``// Initialize result ` `    ``int` `count = 0; ` ` `  `    ``// Count the number of iterations to ` `    ``// reach x = 0. ` `    ``while` `(x != 0) { ` `        ``// This operation reduces length ` `        ``// of every sequence of 1s by one ` `        ``x = (x & (x << 1)); ` ` `  `        ``count++; ` `    ``} ` ` `  `    ``return` `count; ` `} ` ` `  `// Function to return the count of ` `// maximum consecutive 1s in the ` `// binary represntation among all ` `// the elements of arr[] ` `int` `maxOnes(``int` `arr[], ``int` `n) ` `{ ` `    ``// To store the answer ` `    ``int` `ans = 0; ` ` `  `    ``// For every element of the array ` `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// Count of maximum consecutive 1s in ` `        ``// the binary representation of ` `        ``// the current element ` `        ``int` `currMax = maxConsecutiveOnes(arr[i]); ` ` `  `        ``// Update the maximum count so far ` `        ``ans = max(ans, currMax); ` `    ``} ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 2, 3, 4 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(``int``); ` ` `  `    ``cout << maxOnes(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` ` `  `// Function to return the count of ` `// maximum consecutive 1s in the ` `// binary represntation of x ` `static` `int` `maxConsecutiveOnes(``int` `x) ` `{ ` `    ``// Initialize result ` `    ``int` `count = ``0``; ` ` `  `    ``// Count the number of iterations to ` `    ``// reach x = 0. ` `    ``while` `(x != ``0``)  ` `    ``{ ` `        ``// This operation reduces length ` `        ``// of every sequence of 1s by one ` `        ``x = (x & (x << ``1``)); ` ` `  `        ``count++; ` `    ``} ` `    ``return` `count; ` `} ` ` `  `// Function to return the count of ` `// maximum consecutive 1s in the ` `// binary represntation among all ` `// the elements of arr[] ` `static` `int` `maxOnes(``int` `arr[], ``int` `n) ` `{ ` `    ``// To store the answer ` `    ``int` `ans = ``0``; ` ` `  `    ``// For every element of the array ` `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` ` `  `        ``// Count of maximum consecutive 1s in ` `        ``// the binary representation of ` `        ``// the current element ` `        ``int` `currMax = maxConsecutiveOnes(arr[i]); ` ` `  `        ``// Update the maximum count so far ` `        ``ans = Math.max(ans, currMax); ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String []args) ` `{ ` `    ``int` `arr[] = { ``1``, ``2``, ``3``, ``4` `}; ` `    ``int` `n = arr.length; ` ` `  `    ``System.out.println(maxOnes(arr, n)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to return the count of  ` `# maximum consecutive 1s in the  ` `# binary represntation of x  ` `def` `maxConsecutiveOnes(x) :  ` ` `  `    ``# Initialize result  ` `    ``count ``=` `0``;  ` ` `  `    ``# Count the number of iterations to  ` `    ``# reach x = 0.  ` `    ``while` `(x !``=` `0``) : ` `         `  `        ``# This operation reduces length  ` `        ``# of every sequence of 1s by one  ` `        ``x ``=` `(x & (x << ``1``));  ` ` `  `        ``count ``+``=` `1``;  ` `     `  `    ``return` `count;  ` ` `  `# Function to return the count of  ` `# maximum consecutive 1s in the  ` `# binary represntation among all  ` `# the elements of arr[]  ` `def` `maxOnes(arr, n) :  ` ` `  `    ``# To store the answer  ` `    ``ans ``=` `0``;  ` ` `  `    ``# For every element of the array  ` `    ``for` `i ``in` `range``(n) : ` ` `  `        ``# Count of maximum consecutive 1s in  ` `        ``# the binary representation of  ` `        ``# the current element  ` `        ``currMax ``=` `maxConsecutiveOnes(arr[i]);  ` ` `  `        ``# Update the maximum count so far  ` `        ``ans ``=` `max``(ans, currMax);  ` ` `  `    ``return` `ans;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``arr ``=` `[ ``1``, ``2``, ``3``, ``4` `];  ` `    ``n ``=` `len``(arr);  ` ` `  `    ``print``(maxOnes(arr, n));  ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System; ` `                     `  `class` `GFG ` `{ ` ` `  `// Function to return the count of ` `// maximum consecutive 1s in the ` `// binary represntation of x ` `static` `int` `maxConsecutiveOnes(``int` `x) ` `{ ` `    ``// Initialize result ` `    ``int` `count = 0; ` ` `  `    ``// Count the number of iterations to ` `    ``// reach x = 0. ` `    ``while` `(x != 0)  ` `    ``{ ` `        ``// This operation reduces length ` `        ``// of every sequence of 1s by one ` `        ``x = (x & (x << 1)); ` ` `  `        ``count++; ` `    ``} ` `    ``return` `count; ` `} ` ` `  `// Function to return the count of ` `// maximum consecutive 1s in the ` `// binary represntation among all ` `// the elements of arr[] ` `static` `int` `maxOnes(``int` `[]arr, ``int` `n) ` `{ ` `    ``// To store the answer ` `    ``int` `ans = 0; ` ` `  `    ``// For every element of the array ` `    ``for` `(``int` `i = 0; i < n; i++)  ` `    ``{ ` ` `  `        ``// Count of maximum consecutive 1s in ` `        ``// the binary representation of ` `        ``// the current element ` `        ``int` `currMax = maxConsecutiveOnes(arr[i]); ` ` `  `        ``// Update the maximum count so far ` `        ``ans = Math.Max(ans, currMax); ` `    ``} ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String []args) ` `{ ` `    ``int` `[]arr = { 1, 2, 3, 4 }; ` `    ``int` `n = arr.Length; ` ` `  `    ``Console.WriteLine(maxOnes(arr, n)); ` `} ` `} ` ` `  `// This code is contributed by 29AjayKumar `

Output:

```2
``` My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01, 29AjayKumar