Given an array arr[] of size n where arr[i] is the number of candies of type i. You have an unlimited amount of money. The task is to buy as many candies as possible satisfying the following conditions:
If you buy x(i) candies of type i (clearly, 0 ? x(i) ? arr[i]), then for all j (1 ? j ? i) at least one of the following must hold:
- x(j) < x(i) (you bought less candies of type j than of type i)
- x(j) = 0 (you bought 0 candies of type j)
Examples:
Input:arr[] = {1, 2, 1, 3, 6}
Output: 10
x[] = {0, 0, 1, 3, 6} where x[i] is the number of candies bought of type i
Input: arr[] = {3, 2, 5, 4, 10}
Output: 20
Input: arr[] = {1, 1, 1, 1}
Output: 1
Approach: We can use a greedy approach and start from the end of the array. If we have taken x candies of type i + 1 then we can only take min(arr[i], x – 1) candies of type i. If this value is negative, we cannot buy candies of the current type.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int maxCandies( int arr[], int n)
{
int prevBought = arr[n - 1];
int candies = prevBought;
for ( int i = n - 2; i >= 0; i--) {
int x = min(prevBought - 1, arr[i]);
if (x >= 0) {
candies += x;
prevBought = x;
}
}
return candies;
}
int main()
{
int arr[] = { 1, 2, 1, 3, 6 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << maxCandies(arr, n);
return 0;
}
|
Java
class GFG
{
static int maxCandies( int arr[], int n)
{
int prevBought = arr[n - 1 ];
int candies = prevBought;
for ( int i = n - 2 ; i >= 0 ; i--)
{
int x = Math.min(prevBought - 1 , arr[i]);
if (x >= 0 )
{
candies += x;
prevBought = x;
}
}
return candies;
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 1 , 3 , 6 };
int n = arr.length;
System.out.println(maxCandies(arr, n));
}
}
|
Python3
def maxCandies(arr, n) :
prevBought = arr[n - 1 ];
candies = prevBought;
for i in range (n - 2 , - 1 , - 1 ) :
x = min (prevBought - 1 , arr[i]);
if (x > = 0 ) :
candies + = x;
prevBought = x;
return candies;
if __name__ = = "__main__" :
arr = [ 1 , 2 , 1 , 3 , 6 ];
n = len (arr)
print (maxCandies(arr, n));
|
C#
using System;
class GFG
{
static int maxCandies( int [] arr, int n)
{
int prevBought = arr[n - 1];
int candies = prevBought;
for ( int i = n - 2; i >= 0; i--)
{
int x = Math.Min(prevBought - 1, arr[i]);
if (x >= 0)
{
candies += x;
prevBought = x;
}
}
return candies;
}
public static void Main()
{
int [] arr= { 1, 2, 1, 3, 6 };
int n = arr.Length;
Console.WriteLine(maxCandies(arr, n));
}
}
|
PHP
<?php
function maxCandies( $arr , $n )
{
$prevBought = $arr [ $n - 1];
$candies = $prevBought ;
for ( $i = $n - 2; $i >= 0; $i --)
{
$x = min( $prevBought - 1, $arr [ $i ]);
if ( $x >= 0)
{
$candies += $x ;
$prevBought = $x ;
}
}
return $candies ;
}
$arr = array (1, 2, 1, 3, 6 );
$n = sizeof( $arr );
echo (maxCandies( $arr , $n ));
?>
|
Javascript
<script>
function maxCandies(arr, n)
{
let prevBought = arr[n - 1];
let candies = prevBought;
for (let i = n - 2; i >= 0; i--)
{
let x = Math.min(prevBought - 1, arr[i]);
if (x >= 0)
{
candies += x;
prevBought = x;
}
}
return candies;
}
let arr = [ 1, 2, 1, 3, 6 ];
let n = arr.length;
document.write(maxCandies(arr, n));
</script>
|
Time Complexity: O(n)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
09 Jun, 2022
Like Article
Save Article