Maximum number of 3-person teams formed from two groups

Given two integers N1 and N2 where, N1 is the number of people in group 1 and N2 is the number of people in group 2. The task is to count the maximum number of 3-person teams that can be formed when at least a single person is chosen from both the groups.

Examples:

Input: N1 = 2, N2 = 8
Output: 2
Team 1: 2 members from group 2 and 1 member from group 1
Update: N1 = 1, N2 = 6
Team 2: 2 members from group 2 and 1 member from group 1
Update: N1 = 0, N2 = 4
No further teams can be formed.

Input: N1 = 4, N2 = 5
Output: 3

Approach: Choose a single person from the team with less members and choose 2 persons from the team with more members (while possible) and update count = count + 1. Print the count in the end.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the count
// of maximum teams possible
int maxTeams(int N1, int N2)
{
  
    int count = 0;
  
    // While it is possible to form a team
    while (N1 > 0 && N2 > 0 && N1 + N2 >= 3) {
  
        // Choose 2 memebers from group 1
        // and a single memeber from group 2
        if (N1 > N2) {
            N1 -= 2;
            N2 -= 1;
        }
  
        // Choose 2 memebers from group 2
        // and a single memeber from group 1
        else {
            N1 -= 1;
            N2 -= 2;
        }
  
        // Update the count
        count++;
    }
  
    // Return the count
    return count;
}
  
// Driver code
int main()
{
  
    int N1 = 4, N2 = 5;
    cout << maxTeams(N1, N2);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
  
class GFG
{
    // Function to return the count
    // of maximum teams possible
    static int maxTeams(int N1, int N2)
    {
      
        int count = 0;
      
        // While it is possible to form a team
        while (N1 > 0 && N2 > 0 && N1 + N2 >= 3) {
      
            // Choose 2 memebers from group 1
            // and a single memeber from group 2
            if (N1 > N2) {
                N1 -= 2;
                N2 -= 1;
            }
      
            // Choose 2 memebers from group 2
            // and a single memeber from group 1
            else {
                N1 -= 1;
                N2 -= 2;
            }
      
            // Update the count
            count++;
        }
      
        // Return the count
        return count;
    }
      
    // Driver code
    public static void main(String []args)
    {
      
        int N1 = 4, N2 = 5;
        System.out.println(maxTeams(N1, N2));
      
          
    }
  
}
  
// This code is contributed by ihritik

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
  
# Function to return the count
# of maximum teams possible
def maxTeams(N1, N2):
  
  
    count = 0
  
    # While it is possible to form a team
    while (N1 > 0 and N2 > 0 and N1 + N2 >= 3) :
  
        # Choose 2 memebers from group 1
        # and a single memeber from group 2
        if (N1 > N2): 
            N1 -= 2
            N2 -= 1
          
  
        # Choose 2 memebers from group 2
        # and a single memeber from group 1
        else:
            N1 -= 1
            N2 -= 2
          
  
        # Update the count
        count=count+1
      
  
    # Return the count
    return count
  
      
# Driver code
N1 = 4
N2 = 5
print(maxTeams(N1, N2))
  
# This code is contributed by ihritik

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
  
using System;
class GFG
{
    // Function to return the count
    // of maximum teams possible
    static int maxTeams(int N1, int N2)
    {
      
        int count = 0;
      
        // While it is possible to form a team
        while (N1 > 0 && N2 > 0 && N1 + N2 >= 3) {
      
            // Choose 2 memebers from group 1
            // and a single memeber from group 2
            if (N1 > N2) {
                N1 -= 2;
                N2 -= 1;
            }
      
            // Choose 2 memebers from group 2
            // and a single memeber from group 1
            else {
                N1 -= 1;
                N2 -= 2;
            }
      
            // Update the count
            count++;
        }
      
        // Return the count
        return count;
    }
      
    // Driver code
    public static void Main()
    {
      
        int N1 = 4, N2 = 5;
        Console.WriteLine(maxTeams(N1, N2));
      
          
    }
  
}
  
// This code is contributed by ihritik

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach 
  
// Function to return the count 
// of maximum teams possible 
function maxTeams($N1, $N2)
{
    $count = 0 ;
  
    // While it is possible to form a team 
    while ($N1 > 0 && $N2 > 0 &&
                $N1 + $N2 >= 3)
    
  
        // Choose 2 memebers from group 1 
        // and a single memeber from group 2 
        if ($N1 > $N2
        
            $N1 -= 2; 
            $N2 -= 1; 
        
  
        // Choose 2 memebers from group 2 
        // and a single memeber from group 1 
        else
        
            $N1 -= 1; 
            $N2 -= 2; 
        
  
        // Update the count 
        $count++; 
    
  
    // Return the count 
    return $count
  
// Driver code 
$N1 = 4 ;
$N2 = 5 ;
  
echo maxTeams($N1, $N2);
  
// This code is contributed by Ryuga
?>

chevron_right


Output:

3


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : ihritik, AnkitRai01



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.