Related Articles

Related Articles

Maximum neighbor element in a matrix within distance K
  • Difficulty Level : Easy
  • Last Updated : 08 Dec, 2020

Given a matrix mat[][] and an integer K, the task is to find the maximum neighbor within an absolute distance of K for each element of the matrix.
In other words for each Matrix[i][j] find maximum Matrix[p][q] such that abs (i-p) + abs (j-q) ≤ K.
Examples: 
 

Input: mat[][] = {{1, 2}, {4, 5}}, K = 1 
Output: {{4, 5}, {5, 5}} 
Explanation: 
Maximum neighbour to the element mat[0][0] = 4 (Distance = 1) 
Maximum neighbour to the element mat[0][1] = 5 (Distance = 1) 
Maximum neighbour to the element mat[1][0] = 5 (Distance = 1) 
Maximum neighbour to the element mat[1][1] = 5 (Distance = 0)
Input: mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, K = 2 
Output: {{7, 8, 9}, {8, 9, 9}, {9, 9, 9}} 
 

 

Approach: The idea is to iterate over a loop from 1 to K, to choose the element from neighbors with distance less than or equal to K. Each time, Iterate over the matrix to find the maximum adjacent element for each element of the matrix. 
Below is the implementation of the above approach:
 

C++



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find the
// maximum neighbor element within
// the distance of less than K
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to print the matrix
void printMatrix(vector<vector<int> > A)
{
    // Loop to iterate over the matrix
    for (int i = 0; i < A.size(); i++) {
        for (int j = 0; j < A[0].size(); j++)
            cout << A[i][j] << ' ';
        cout << '\n';
    }
}
 
// Function to find the maximum
// neighbor within the distance
// of less than equal to K
vector<vector<int> > getMaxNeighbour(
        vector<vector<int> >& A, int K)
{
    vector<vector<int> > ans = A;
     
    // Loop to find the maximum
    // element within the distance
    // of less than K
    for (int q = 1; q <= K; q++) {
        for (int i = 0; i < A.size(); i++) {
            for (int j = 0; j < A[0].size(); j++) {
                int maxi = ans[i][j];
                if (i > 0)
                    maxi = max(
                        maxi, ans[i - 1][j]);
                if (j > 0)
                    maxi = max(
                        maxi, ans[i][j - 1]);
                if (i < A.size() - 1)
                    maxi = max(
                        maxi, ans[i + 1][j]);
                if (j < A[0].size() - 1)
                    maxi = max(
                        maxi, ans[i][j + 1]);
                A[i][j] = maxi;
            }
        }
        ans = A;
    }
    return ans;
}
 
// Driver Code
int main()
{
    vector<vector<int> > B = { { 1, 2, 3 },
                  { 4, 5, 6 }, { 7, 8, 9 } };
    printMatrix(getMaxNeighbour(B, 2));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find the
// maximum neighbor element within
// the distance of less than K
import java.util.*;
 
class GFG{
 
// Function to print the matrix
static void printMatrix(int [][] A)
{
     
    // Loop to iterate over the matrix
    for(int i = 0; i < A.length; i++)
    {
       for(int j = 0; j < A[0].length; j++)
          System.out.print(A[i][j] + " ");
       System.out.print('\n');
    }
}
 
// Function to find the maximum
// neighbor within the distance
// of less than equal to K
static int [][] getMaxNeighbour(int [][] A,
                                int K)
{
    int [][] ans = A;
     
    // Loop to find the maximum
    // element within the distance
    // of less than K
    for(int q = 1; q <= K; q++)
    {
       for(int i = 0; i < A.length; i++)
       {
          for(int j = 0; j < A[0].length; j++)
          {
             int maxi = ans[i][j];
             if (i > 0)
                 maxi = Math.max(maxi,
                                 ans[i - 1][j]);
             if (j > 0)
                 maxi = Math.max(maxi,
                                 ans[i][j - 1]);
             if (i < A.length - 1)
                 maxi = Math.max(maxi,
                                 ans[i + 1][j]);
             if (j < A[0].length - 1)
                 maxi = Math.max(maxi,
                                 ans[i][j + 1]);
             A[i][j] = maxi;
          }
       }
       ans = A;
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int [][] B = { { 1, 2, 3 },
                   { 4, 5, 6 },
                   { 7, 8, 9 } };
                    
    printMatrix(getMaxNeighbour(B, 2));
}
}
 
// This code is contributed by Princi Singh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find the
# maximum neighbor element within
# the distance of less than K
  
# Function to print the matrix
def printMatrix(A):
 
    # Loop to iterate over the matrix
    for i in range(len(A)):
        for j in range(len(A[0])):
            print(A[i][j], end = ' ')
        print()
          
# Function to find the maximum
# neighbor within the distance
# of less than equal to K
def getMaxNeighbour( A, K ):
 
    ans = A;
      
    # Loop to find the maximum
    # element within the distance
    # of less than K
    for q in range(1, K + 1):
        for i in range(len(A)):
            for j in range(len(A[0])):
                 
                maxi = ans[i][j];
                 
                if (i > 0):
                    maxi = max(maxi, ans[i - 1][j]);
                if (j > 0):
                    maxi = max(maxi, ans[i][j - 1]);
                     
                if (i < len(A) - 1):
                    maxi = max(maxi, ans[i + 1][j]);
                     
                if (j < len(A[0]) - 1):
                    maxi = max(maxi, ans[i][j + 1]);
                     
                A[i][j] = maxi;
 
        ans = A;
     
    return ans;
  
# Driver Code
if __name__=='__main__':
 
    B = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
    printMatrix(getMaxNeighbour(B, 2));
     
# This code is contributed by ruttvik_56

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find the
// maximum neighbor element within
// the distance of less than K
using System;
 
class GFG{
 
// Function to print the matrix
static void printMatrix(int [,] A)
{
     
    // Loop to iterate over the matrix
    for(int i = 0; i < A.GetLength(0); i++)
    {
       for(int j = 0; j < A.GetLength(1); j++)
          Console.Write(A[i, j] + " ");
       Console.Write('\n');
    }
}
 
// Function to find the maximum
// neighbor within the distance
// of less than equal to K
static int [,] getMaxNeighbour(int [,] A,
                               int K)
{
    int [,] ans = A;
     
    // Loop to find the maximum
    // element within the distance
    // of less than K
    for(int q = 1; q <= K; q++)
    {
       for(int i = 0; i < A.GetLength(0); i++)
       {
          for(int j = 0; j < A.GetLength(1); j++)
          {
             int maxi = ans[i, j];
             if (i > 0)
                 maxi = Math.Max(maxi,
                                 ans[i - 1, j]);
             if (j > 0)
                 maxi = Math.Max(maxi,
                                 ans[i, j - 1]);
             if (i < A.GetLength(0) - 1)
                 maxi = Math.Max(maxi,
                                 ans[i + 1, j]);
             if (j < A.GetLength(0) - 1)
                 maxi = Math.Max(maxi,
                                 ans[i, j + 1]);
             A[i, j] = maxi;
          }
       }
       ans = A;
    }
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int [,] B = { { 1, 2, 3 },
                  { 4, 5, 6 },
                  { 7, 8, 9 } };
                     
    printMatrix(getMaxNeighbour(B, 2));
}
}
 
// This code is contributed by Princi Singh

chevron_right


Output: 

7 8 9 
8 9 9 
9 9 9

 

Time Complexity: O(M*N*K) 
Space Complexity: O(M*N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :