Skip to content
Related Articles

Related Articles

Improve Article

Maximum length Subsequence with alternating sign and maximum Sum

  • Difficulty Level : Easy
  • Last Updated : 17 May, 2021

Given an array arr[] of size n having both positive and negative integer excluding zero. The task is to find the subsequence with an alternating sign having maximum size and maximum sum that is, in a subsequence sign of each adjacent element is opposite for example if the first one is positive then the second one has to be negative followed by another positive integer and so on.
Examples:
 

Input: arr[] = {2, 3, 7, -6, -4}
Output: 7 -4
Explanation:
Possible subsequences are [2, -6] [2, -4] [3, -6] [3, -4] [7, -6] [7, -4].
Out of these [7, -4] has the maximum sum. 

Input: arr[] = {-4, 9, 4, 11, -5, -17, 9, -3, -5, 2}
Output: -4 11 -5 9 -3 2  

 

Approach: 
The main idea to solve the above problem is to find the maximum element from the segments of the array which consists of the same sign which means we have to pick the maximum element among continuous positive and continuous negative elements. As we want maximum size we will only take one element from each segment and also to maximize the sum, we need to take the maximum element of each segment. 
Below is the implementation of the above approach: 
 

CPP




// C++ implementation to find the
// subsequence with alternating sign
// having maximum size and maximum sum.
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the subsequence
// with alternating sign having
// maximum size and maximum sum.
void findSubsequence(int arr[], int n)
{
    int sign[n] = { 0 };
 
    // Find whether each element
    // is positive or negative
    for (int i = 0; i < n; i++) {
        if (arr[i] > 0)
            sign[i] = 1;
        else
            sign[i] = -1;
    }
 
    int k = 0;
    int result[n] = { 0 };
 
    // Find the required subsequence
    for (int i = 0; i < n; i++) {
 
        int cur = arr[i];
        int j = i;
 
        while (j < n && sign[i] == sign[j]) {
 
            // Find the maximum element
            // in the specified range
            cur = max(cur, arr[j]);
            ++j;
        }
 
        result[k++] = cur;
 
        i = j - 1;
    }
 
    // print the result
    for (int i = 0; i < k; i++)
        cout << result[i] << " ";
    cout << "\n";
}
 
// Driver code
int main()
{
    // array declaration
    int arr[] = { -4, 9, 4, 11, -5, -17, 9, -3, -5, 2 };
 
    // size of array
    int n = sizeof(arr) / sizeof(arr[0]);
 
    findSubsequence(arr, n);
 
    return 0;
}

Java




// Java implementation to find the
// subsequence with alternating sign
// having maximum size and maximum sum.
class GFG{
  
// Function to find the subsequence
// with alternating sign having
// maximum size and maximum sum.
static void findSubsequence(int arr[], int n)
{
    int sign[] = new int[n];
  
    // Find whether each element
    // is positive or negative
    for (int i = 0; i < n; i++) {
        if (arr[i] > 0)
            sign[i] = 1;
        else
            sign[i] = -1;
    }
  
    int k = 0;
    int result[] = new int[n];
  
    // Find the required subsequence
    for (int i = 0; i < n; i++) {
  
        int cur = arr[i];
        int j = i;
  
        while (j < n && sign[i] == sign[j]) {
  
            // Find the maximum element
            // in the specified range
            cur = Math.max(cur, arr[j]);
            ++j;
        }
  
        result[k++] = cur;
  
        i = j - 1;
    }
  
    // print the result
    for (int i = 0; i < k; i++)
        System.out.print(result[i]+ " ");
    System.out.print("\n");
}
  
// Driver code
public static void main(String[] args)
{
    // array declaration
    int arr[] = { -4, 9, 4, 11, -5, -17, 9, -3, -5, 2 };
  
    // size of array
    int n = arr.length;
  
    findSubsequence(arr, n);
}
}
 
// This code is contributed by Princi Singh

Python3




# Python3 implementation to find the
# subsequence with alternating sign
# having maximum size and maximum sum.
 
# Function to find the subsequence
# with alternating sign having
# maximum size and maximum sum.
def findSubsequence(arr, n):
    sign = [0]*n
 
    # Find whether each element
    # is positive or negative
    for i in range(n):
        if (arr[i] > 0):
            sign[i] = 1
        else:
            sign[i] = -1
 
    k = 0
    result = [0]*n
 
    # Find the required subsequence
    i = 0
    while i < n:
 
        cur = arr[i]
        j = i
 
        while (j < n and sign[i] == sign[j]):
 
            # Find the maximum element
            # in the specified range
            cur = max(cur, arr[j])
            j += 1
 
        result[k] = cur
        k += 1
 
        i = j - 1
        i += 1
 
    # print the result
    for i in range(k):
        print(result[i],end=" ")
 
# Driver code
if __name__ == '__main__':
    # array declaration
    arr=[-4, 9, 4, 11, -5, -17, 9, -3, -5, 2]
 
    # size of array
    n = len(arr)
 
    findSubsequence(arr, n)
 
# This code is contributed by mohit kumar 29

C#




// C# implementation to find the
// subsequence with alternating sign
// having maximum size and maximum sum.
using System;
 
public class GFG{
   
// Function to find the subsequence
// with alternating sign having
// maximum size and maximum sum.
static void findSubsequence(int []arr, int n)
{
    int []sign = new int[n];
   
    // Find whether each element
    // is positive or negative
    for (int i = 0; i < n; i++) {
        if (arr[i] > 0)
            sign[i] = 1;
        else
            sign[i] = -1;
    }
   
    int k = 0;
    int []result = new int[n];
   
    // Find the required subsequence
    for (int i = 0; i < n; i++) {
   
        int cur = arr[i];
        int j = i;
   
        while (j < n && sign[i] == sign[j]) {
   
            // Find the maximum element
            // in the specified range
            cur = Math.Max(cur, arr[j]);
            ++j;
        }
   
        result[k++] = cur;
   
        i = j - 1;
    }
   
    // print the result
    for (int i = 0; i < k; i++)
        Console.Write(result[i]+ " ");
    Console.Write("\n");
}
   
// Driver code
public static void Main(String[] args)
{
    // array declaration
    int []arr = { -4, 9, 4, 11, -5, -17, 9, -3, -5, 2 };
   
    // size of array
    int n = arr.Length;
   
    findSubsequence(arr, n);
}
}
// This code contributed by Rajput-Ji

Javascript




<script>
 
// Javascript implementation to find the
// subsequence with alternating sign
// having maximum size and maximum sum.
 
// Function to find the subsequence
// with alternating sign having
// maximum size and maximum sum.
function findSubsequence(arr, n)
{
    let sign = Array.from({length: n}, (_, i) => 0);
    
    // Find whether each element
    // is positive or negative
    for (let i = 0; i < n; i++)
    {
        if (arr[i] > 0)
            sign[i] = 1;
        else
            sign[i] = -1;
    }
    
    let k = 0;
    let result = Array.from({length: n}, (_, i) => 0);
    
    // Find the required subsequence
    for (let i = 0; i < n; i++) {
    
        let cur = arr[i];
        let j = i;
    
        while (j < n && sign[i] == sign[j]) {
    
            // Find the maximum element
            // in the specified range
            cur = Math.max(cur, arr[j]);
            ++j;
        }
    
        result[k++] = cur;
    
        i = j - 1;
    }
    
    // prlet the result
    for (let i = 0; i < k; i++)
        document.write(result[i]+ " ");
    document.write("<br/>");
}
 
// Driver Code
     
    // array declaration
    let arr = [ -4, 9, 4, 11, -5, -17, 9, -3, -5, 2 ];
    
    // size of array
    let n = arr.length;
    
    findSubsequence(arr, n);
 
// This code is contributed by sanjoy_62.
</script>
Output: 
-4 11 -5 9 -3 2

 

Time Complexity :O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :