# Maximum length subarray with difference between adjacent elements as either 0 or 1

Given an array of n integers. The task is to find the maximum length of the sub-array such that absolute difference between all the consecutive elements of the sub-array is either 0 or 1.

Examples:

Input: arr[] = {2, 5, 6, 3, 7, 6, 5, 8}
Output: 3
{5, 6} and {7, 6, 5} are the only valid sub-arrays.

Input: arr[] = {-2, -1, 5, -1, 4, 0, 3}
Output: 2

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Starting from the first element of the array, find the first valid sub-array and store it’s length then starting from the next element (the first element that wasn’t included in the first sub-array), find another valid sub-array. Repeat the process until all the valid sub-arrays have been found then print the length of the maximum sub-array.

Below is the implementation of the above approach:

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the maximum length ` `// of the sub-array such that the ` `// absolute difference between every two ` `// consecutive elements is either 1 or 0 ` `int` `getMaxLength(``int` `arr[],``int` `n) ` `{ ` `    ``int` `l = n; ` `    ``int` `i = 0, maxlen = 0; ` `    ``while` `(i < l) ` `    ``{ ` `        ``int` `j = i; ` `        ``while` `(i+1 < l && ` `             ``(``abs``(arr[i] - arr[i + 1]) == 1 || ` `             ``abs``(arr[i] - arr[i + 1]) == 0))  ` `        ``{ ` `            ``i++; ` `        ``} ` ` `  `            ``// Length of the valid sub-array currently ` `            ``// under consideration ` `            ``int` `currLen = i - j + 1; ` ` `  `            ``// Update the maximum length ` `            ``if` `(maxlen < currLen) ` `                ``maxlen = currLen; ` ` `  `            ``if` `(j == i) ` `                ``i++; ` `    ``} ` ` `  `    ``// Any valid sub-array cannot be of length 1 ` `    ``//maxlen = (maxlen == 1) ? 0 : maxlen; ` ` `  `    ``// Return the maximum possible length ` `    ``return` `maxlen; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 2, 4 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` `    ``cout << getMaxLength(arr, n); ` `} ` ` `  `// This code is contributed by ` `// Surendra_Gangwar `

 `// Java implementation of the approach ` `public` `class` `GFG { ` ` `  `    ``// Function to return the maximum length ` `    ``// of the sub-array such that the ` `    ``// absolute difference between every two ` `    ``// consecutive elements is either 1 or 0 ` `    ``public` `static` `int` `getMaxLength(``int` `arr[]) ` `    ``{ ` ` `  `        ``int` `l = arr.length; ` `        ``int` `i = ``0``, maxlen = ``0``; ` `        ``while` `(i < l) { ` `            ``int` `j = i; ` `            ``while` `(i + ``1` `< l ` `                   ``&& (Math.abs(arr[i] - arr[i + ``1``]) == ``1` `                       ``|| Math.abs(arr[i] - arr[i + ``1``]) == ``0``)) { ` `                ``i++; ` `            ``} ` ` `  `            ``// Length of the valid sub-array currently ` `            ``// under cosideration ` `            ``int` `currLen = i - j + ``1``; ` ` `  `            ``// Update the maximum length ` `            ``if` `(maxlen < currLen) ` `                ``maxlen = currLen; ` ` `  `            ``if` `(j == i) ` `                ``i++; ` `        ``} ` ` `  `        ``// Any valid sub-array cannot be of length 1 ` `        ``maxlen = (maxlen == ``1``) ? ``0` `: maxlen; ` ` `  `        ``// Return the maximum possible length ` `        ``return` `maxlen; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args) ` `    ``{ ` `        ``int` `arr[] = { ``2``, ``4` `}; ` `        ``System.out.print(getMaxLength(arr)); ` `    ``} ` `} `

 `# Python3 implementation of the approach  ` ` `  `# Function to return the maximum length  ` `# of the sub-array such that the  ` `# absolute difference between every two  ` `# consecutive elements is either 1 or 0  ` `def` `getMaxLength(arr, n) : ` `     `  `    ``l ``=` `n;  ` `    ``i ``=` `0``; maxlen ``=` `0``; ` `     `  `    ``while` `(i < l) : ` `        ``j ``=` `i;  ` `        ``while` `(i ``+` `1` `< l ``and` `              ``(``abs``(arr[i] ``-` `arr[i ``+` `1``]) ``=``=` `1` `or` `               ``abs``(arr[i] ``-` `arr[i ``+` `1``]) ``=``=` `0``)) : ` `         `  `            ``i ``+``=` `1``;  ` `         `  `        ``# Length of the valid sub-array  ` `        ``# currently under cosideration  ` `        ``currLen ``=` `i ``-` `j ``+` `1``;  ` ` `  `        ``# Update the maximum length  ` `        ``if` `(maxlen < currLen) :  ` `            ``maxlen ``=` `currLen;  ` ` `  `        ``if` `(j ``=``=` `i) : ` `            ``i ``+``=` `1``;  ` `     `  `    ``# Any valid sub-array cannot be of length 1  ` `    ``# maxlen = (maxlen == 1) ? 0 : maxlen;  ` ` `  `    ``# Return the maximum possible length  ` `    ``return` `maxlen;  ` `     `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `: ` ` `  `    ``arr ``=` `[ ``2``, ``4` `];  ` `    ``n ``=` `len``(arr)  ` `    ``print``(getMaxLength(arr, n));  ` ` `  `# This code is contributed by Ryuga `

 `// C# implementation of the approach  ` `using` `System; ` ` `  `class` `GFG  ` `{  ` ` `  `    ``// Function to return the maximum length  ` `    ``// of the sub-array such that the  ` `    ``// Absolute difference between every two  ` `    ``// consecutive elements is either 1 or 0  ` `    ``public` `static` `int` `getMaxLength(``int` `[]arr)  ` `    ``{  ` ` `  `        ``int` `l = arr.Length;  ` `        ``int` `i = 0, maxlen = 0;  ` `        ``while` `(i < l)  ` `        ``{  ` `            ``int` `j = i;  ` `            ``while` `(i + 1 < l &&  ` `                    ``(Math.Abs(arr[i] - arr[i + 1]) == 1 || ` `                    ``Math.Abs(arr[i] - arr[i + 1]) == 0))  ` `            ``{  ` `                ``i++;  ` `            ``}  ` ` `  `            ``// Length of the valid sub-array currently  ` `            ``// under cosideration  ` `            ``int` `currLen = i - j + 1;  ` ` `  `            ``// Update the maximum length  ` `            ``if` `(maxlen < currLen)  ` `                ``maxlen = currLen;  ` ` `  `            ``if` `(j == i)  ` `                ``i++;  ` `        ``}  ` ` `  `        ``// Any valid sub-array cannot be of length 1  ` `        ``maxlen = (maxlen == 1) ? 0 : maxlen;  ` ` `  `        ``// Return the maximum possible length  ` `        ``return` `maxlen;  ` `    ``}  ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main(String []args)  ` `    ``{  ` `        ``int` `[]arr = { 2, 4 };  ` `        ``Console.Write(getMaxLength(arr));  ` `    ``}  ` `}  ` ` `  `// This code is contributed by Arnab Kundu `

 ` `

Output:
```1
```

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :