Skip to content
Related Articles

Related Articles

Improve Article

Maximum length of subarray consisting of same type of element on both halves of sub-array

  • Difficulty Level : Expert
  • Last Updated : 06 Jul, 2021

Given an array arr[] of N integers, the task is to find the maximum length of sub-array consisting of the same type of element on both halves of the sub-array. Also, the elements on both halves differ from each other.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {2, 3, 4, 4, 5, 5, 6, 7, 8, 10}
Output: 4
Explanation:
{2, 3}, {3, 4}, {4, 4, 5, 5}, {5, 6}, etc, are the valid sub-arrays where both halves have only one type of element. 
{4, 4, 5, 5} is the sub-array having maximum length.
Hence, the output is 4. 

Input: arr[] = {1, 7, 7, 10, 10, 7, 7, 7, 8, 8, 8, 9}
Output: 6
Explanation:
{1, 7}, {7, 7, 10, 10}, {7, 7, 7, 8, 8, 8}, {8, 9}, etc, are the valid sub-arrays where both halves have only one type of element. 
{7, 7, 7, 8, 8, 8} is the sub-array having maximum length.
Hence, the output is 6. 

 

Naive Approach: The naive idea is to generate all possible subarray and check any subarray with maximum length can be divided into two halves such that all the elements in both the halves are the same.



Time Complexity: O(N3)
Auxiliary Space: O(1)

Efficient Approach: To solve this problem the idea is to use the concept of Prefix Sum. Follow the steps below to solve the problem: 

  1. Traverse the array from the start in the forward direction and store the continuous occurrence of an integer for each index in an array forward[].
  2. Similarly, traverse the array from the end in the reverse direction and store the continuous occurrence of an integer for each index in an array backward[].
  3. Store the maximum of min(forward[i], backward[i+1])*2, for all the index where arr[i]!=arr[i+1].
  4. Print the value obtained in the above step.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that finds the maximum
// length of the sub-array that
// contains equal element on both
// halves of sub-array
void maxLengthSubArray(int A[], int N)
{
 
    // To store continuous occurence
    // of the element
    int forward[N], backward[N];
 
    // To store continuous
    // forward occurence
    for (int i = 0; i < N; i++) {
 
        if (i == 0
            || A[i] != A[i - 1]) {
            forward[i] = 1;
        }
        else
            forward[i] = forward[i - 1] + 1;
    }
 
    // To store continuous
    // backward occurence
    for (int i = N - 1; i >= 0; i--) {
 
        if (i == N - 1
            || A[i] != A[i + 1]) {
            backward[i] = 1;
        }
        else
            backward[i] = backward[i + 1] + 1;
    }
 
    // To store the maximum length
    int ans = 0;
 
    // Find maximum length
    for (int i = 0; i < N - 1; i++) {
 
        if (A[i] != A[i + 1])
            ans = max(ans,
                    min(forward[i],
                        backward[i + 1])
                        * 2);
    }
 
    // Print the result
    cout << ans;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 1, 2, 3, 4, 4,
                4, 6, 6, 6, 9 };
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    maxLengthSubArray(arr, N);
    return 0;
}

Java




// Java program for the above approach         
class GFG{         
            
// Function that finds the maximum         
// length of the sub-array that         
// contains equal element on both         
// halves of sub-array         
static void maxLengthSubArray(int A[], int N)         
{
     
    // To store continuous occurence         
    // of the element         
    int forward[] = new int[N];         
    int backward[] = new int[N];         
     
    // To store continuous         
    // forkward occurence         
    for(int i = 0; i < N; i++)
    {
        if (i == 0 || A[i] != A[i - 1])
        {         
            forward[i] = 1;         
        }         
        else         
            forward[i] = forward[i - 1] + 1;         
    }         
     
    // To store continuous         
    // backward occurence         
    for(int i = N - 1; i >= 0; i--)
    {
        if (i == N - 1 || A[i] != A[i + 1])
        {         
            backward[i] = 1;         
        }         
        else         
            backward[i] = backward[i + 1] + 1;         
    }         
            
    // To store the maximum length         
    int ans = 0;         
        
    // Find maximum length         
    for(int i = 0; i < N - 1; i++)
    {         
        if (A[i] != A[i + 1])         
            ans = Math.max(ans,         
                           Math.min(forward[i],         
                                    backward[i + 1]) * 2);         
    }         
     
    // Print the result         
    System.out.println(ans);         
}         
            
// Driver Code         
public static void main(String[] args)
{         
     
    // Given array         
    int arr[] = { 1, 2, 3, 4, 4,         
                  4, 6, 6, 6, 9 };         
            
    // Size of the array         
    int N = arr.length;         
            
    // Function call         
    maxLengthSubArray(arr, N);         
}         
}
 
// This code is contributed by rutvik_56

Python3




# Python3 program for the above approach
 
# Function that finds the maximum
# length of the sub-array that
# contains equal element on both
# halves of sub-array
def maxLengthSubArray(A, N):
 
    # To store continuous occurence
    # of the element
    forward = [0] * N
    backward = [0] * N
 
    # To store continuous
    # forward occurence
    for i in range(N):
            if i == 0 or A[i] != A[i - 1]:
                forward[i] = 1
            else:
                forward[i] = forward[i - 1] + 1
 
    # To store continuous
    # backward occurence
    for i in range(N - 1, -1, -1):
        if i == N - 1 or A[i] != A[i + 1]:
            backward[i] = 1
        else:
            backward[i] = backward[i + 1] + 1
             
    # To store the maximum length
    ans = 0
 
    # Find maximum length
    for i in range(N - 1):
        if (A[i] != A[i + 1]):
            ans = max(ans,
                    min(forward[i],
                        backward[i + 1]) * 2);
 
    # Print the result
    print(ans)
 
# Driver Code
 
# Given array
arr = [ 1, 2, 3, 4, 4, 4, 6, 6, 6, 9 ]
 
# Size of the array
N = len(arr)
 
# Function call
maxLengthSubArray(arr, N)
 
# This code is contributed by yatinagg

C#




// C# program for the above approach         
using System;
class GFG{         
            
// Function that finds the maximum         
// length of the sub-array that         
// contains equal element on both         
// halves of sub-array         
static void maxLengthSubArray(int []A, int N)         
{
     
    // To store continuous occurence         
    // of the element         
    int []forward = new int[N];         
    int []backward = new int[N];         
     
    // To store continuous         
    // forkward occurence         
    for(int i = 0; i < N; i++)
    {
        if (i == 0 || A[i] != A[i - 1])
        {         
            forward[i] = 1;         
        }         
        else         
            forward[i] = forward[i - 1] + 1;         
    }         
     
    // To store continuous         
    // backward occurence         
    for(int i = N - 1; i >= 0; i--)
    {
        if (i == N - 1 || A[i] != A[i + 1])
        {         
            backward[i] = 1;         
        }         
        else         
            backward[i] = backward[i + 1] + 1;         
    }         
            
    // To store the maximum length         
    int ans = 0;         
        
    // Find maximum length         
    for(int i = 0; i < N - 1; i++)
    {         
        if (A[i] != A[i + 1])         
            ans = Math.Max(ans,         
                           Math.Min(forward[i],         
                                    backward[i + 1]) * 2);         
    }         
     
    // Print the result         
    Console.WriteLine(ans);         
}         
            
// Driver Code         
public static void Main(String[] args)
{         
     
    // Given array         
    int []arr = { 1, 2, 3, 4, 4,         
                  4, 6, 6, 6, 9 };         
            
    // Size of the array         
    int N = arr.Length;         
            
    // Function call         
    maxLengthSubArray(arr, N);         
}         
}
 
// This code is contributed by Princi Singh

Javascript




<script>
 
// Javascript program for the above approach
 
// Function that finds the maximum        
// length of the sub-array that        
// contains equal element on both        
// halves of sub-array        
function maxLengthSubArray(A, N)        
{
      
    // To store continuous occurence        
    // of the element        
    let forward = Array.from({length: N}, (_, i) => 0);       
    let backward = Array.from({length: N}, (_, i) => 0);   
      
    // To store continuous        
    // forkward occurence        
    for(let i = 0; i < N; i++)
    {
        if (i == 0 || A[i] != A[i - 1])
        {        
            forward[i] = 1;        
        }        
        else        
            forward[i] = forward[i - 1] + 1;        
    }        
      
    // To store continuous        
    // backward occurence        
    for(let i = N - 1; i >= 0; i--)
    {
        if (i == N - 1 || A[i] != A[i + 1])
        {        
            backward[i] = 1;        
        }        
        else        
            backward[i] = backward[i + 1] + 1;        
    }        
             
    // To store the maximum length        
    let ans = 0;        
         
    // Find maximum length        
    for(let i = 0; i < N - 1; i++)
    {        
        if (A[i] != A[i + 1])        
            ans = Math.max(ans,        
                           Math.min(forward[i],        
                                    backward[i + 1]) * 2);        
    }        
      
    // Print the result        
    document.write(ans);        
}        
    
 
// Driver Code
     
    // Given array        
    let arr = [ 1, 2, 3, 4, 4,        
                  4, 6, 6, 6, 9 ];        
             
    // Size of the array        
    let N = arr.length;        
             
    // Function call        
    maxLengthSubArray(arr, N);
 
</script>
Output: 
6

 

Time Complexity: O(N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :