Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximum length of Strictly Increasing Sub-array after removing at most one element

  • Difficulty Level : Medium
  • Last Updated : 09 Apr, 2021

Given an array arr[], the task is to remove at most one element and calculate the maximum length of strictly increasing subarray.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {1, 2, 5, 3, 4} 
Output:
After deleting 5, the resulting array will be {1, 2, 3, 4} 
and the maximum length of its strictly increasing subarray is 4.



Input: arr[] = {1, 2} 
Output:
The complete array is already strictly increasing. 

Approach:  

  • Create two arrays pre[] and pos[] of size N.
  • Iterate over the input array arr[] from (0, N) to find out the contribution of the current element arr[i] in the array till now [0, i) and update the pre[] array if it contributes in the strictly increasing subarray.
  • Iterate over the input array arr[] from [N – 2, 0] to find out the contribution of the current element arr[j] in the array till now (N, j) and update the pos[] array if arr[j] contributes in the longest increasing subarray.
  • Calculate the maximum length of the stricly increasing subarray without removing any element.
  • Iterate over the array pre[] and pos[] to find out the contribution of the current element by excluding that element.
  • Maintain a variable ans to find the maximum found till now.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum length of
// strictly increasing subarray after
// removing atmost one element
int maxIncSubarr(int a[], int n)
{
    // Create two arrays pre and pos
    int pre[n] = { 0 };
    int pos[n] = { 0 };
    pre[0] = 1;
    pos[n - 1] = 1;
    int l = 0;
 
    // Find out the contribution of the current
    // element in array[0, i] and update pre[i]
    for (int i = 1; i < n; i++) {
        if (a[i] > a[i - 1])
            pre[i] = pre[i - 1] + 1;
        else
            pre[i] = 1;
    }
 
    // Find out the contribution of the current
    // element in array[N - 1, i] and update pos[i]
    l = 1;
    for (int i = n - 2; i >= 0; i--) {
        if (a[i] < a[i + 1])
            pos[i] = pos[i + 1] + 1;
        else
            pos[i] = 1;
    }
 
    // Calculate the maximum length of the
    // stricly increasing subarray without
    // removing any element
    int ans = 0;
    l = 1;
    for (int i = 1; i < n; i++) {
        if (a[i] > a[i - 1])
            l++;
        else
            l = 1;
        ans = max(ans, l);
    }
 
    // Calculate the maximum length of the
    // strictly increasing subarray after
    // removing the current element
    for (int i = 1; i <= n - 2; i++) {
        if (a[i - 1] < a[i + 1])
            ans = max(pre[i - 1] + pos[i + 1], ans);
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << maxIncSubarr(arr, n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the maximum length of
    // strictly increasing subarray after
    // removing atmost one element
    static int maxIncSubarr(int a[], int n)
    {
        // Create two arrays pre and pos
        int pre[] = new int[n] ;
        int pos[] = new int[n] ;
        pre[0] = 1;
        pos[n - 1] = 1;
        int l = 0;
     
        // Find out the contribution of the current
        // element in array[0, i] and update pre[i]
        for (int i = 1; i < n; i++)
        {
            if (a[i] > a[i - 1])
                pre[i] = pre[i - 1] + 1;
            else
                pre[i] = 1;
        }
     
        // Find out the contribution of the current
        // element in array[N - 1, i] and update pos[i]
        l = 1;
        for (int i = n - 2; i >= 0; i--)
        {
            if (a[i] < a[i + 1])
                pos[i] = pos[i + 1] + 1;
            else
                pos[i] = 1;
        }
     
        // Calculate the maximum length of the
        // stricly increasing subarray without
        // removing any element
        int ans = 0;
        l = 1;
        for (int i = 1; i < n; i++)
        {
            if (a[i] > a[i - 1])
                l++;
            else
                l = 1;
            ans = Math.max(ans, l);
        }
     
        // Calculate the maximum length of the
        // strictly increasing subarray after
        // removing the current element
        for (int i = 1; i <= n - 2; i++)
        {
            if (a[i - 1] < a[i + 1])
                ans = Math.max(pre[i - 1] +
                                pos[i + 1], ans);
        }
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = {1, 2};
        int n = arr.length;
     
        System.out.println(maxIncSubarr(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python implementation of the approach
 
# Function to return the maximum length of
# strictly increasing subarray after
# removing atmost one element
def maxIncSubarr(a, n):
     
    # Create two arrays pre and pos
    pre = [0] * n;
    pos = [0] * n;
    pre[0] = 1;
    pos[n - 1] = 1;
    l = 0;
 
    # Find out the contribution of the current
    # element in array[0, i] and update pre[i]
    for i in range(1, n):
        if (a[i] > a[i - 1]):
            pre[i] = pre[i - 1] + 1;
        else:
            pre[i] = 1;
     
    # Find out the contribution of the current
    # element in array[N - 1, i] and update pos[i]
    l = 1;
    for i in range(n - 2, -1, -1):
        if (a[i] < a[i + 1]):
            pos[i] = pos[i + 1] + 1;
        else:
            pos[i] = 1;
     
    # Calculate the maximum length of the
    # stricly increasing subarray without
    # removing any element
    ans = 0;
    l = 1;
    for i in range(1, n):
        if (a[i] > a[i - 1]):
            l += 1;
        else:
            l = 1;
        ans = max(ans, l);
     
    # Calculate the maximum length of the
    # strictly increasing subarray after
    # removing the current element
    for i in range(1, n - 1):
        if (a[i - 1] < a[i + 1]):
            ans = max(pre[i - 1] + pos[i + 1], ans);
     
    return ans;
 
# Driver code
if __name__ == '__main__':
    arr = [ 1, 2 ];
    n = len(arr);
 
    print(maxIncSubarr(arr, n));
     
# This code is contributed by PrinciRaj1992

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the maximum length of
    // strictly increasing subarray after
    // removing atmost one element
    static int maxIncSubarr(int []a, int n)
    {
        // Create two arrays pre and pos
        int []pre = new int[n] ;
        int []pos = new int[n] ;
        pre[0] = 1;
        pos[n - 1] = 1;
        int l = 0;
     
        // Find out the contribution of the current
        // element in array[0, i] and update pre[i]
        for (int i = 1; i < n; i++)
        {
            if (a[i] > a[i - 1])
                pre[i] = pre[i - 1] + 1;
            else
                pre[i] = 1;
        }
     
        // Find out the contribution of the current
        // element in array[N - 1, i] and update pos[i]
        l = 1;
        for (int i = n - 2; i >= 0; i--)
        {
            if (a[i] < a[i + 1])
                pos[i] = pos[i + 1] + 1;
            else
                pos[i] = 1;
        }
     
        // Calculate the maximum length of the
        // stricly increasing subarray without
        // removing any element
        int ans = 0;
        l = 1;
        for (int i = 1; i < n; i++)
        {
            if (a[i] > a[i - 1])
                l++;
            else
                l = 1;
            ans = Math.Max(ans, l);
        }
     
        // Calculate the maximum length of the
        // strictly increasing subarray after
        // removing the current element
        for (int i = 1; i <= n - 2; i++)
        {
            if (a[i - 1] < a[i + 1])
                ans = Math.Max(pre[i - 1] +
                                pos[i + 1], ans);
        }
        return ans;
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = {1, 2};
        int n = arr.Length;
     
        Console.WriteLine(maxIncSubarr(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the maximum length of
// strictly increasing subarray after
// removing atmost one element
function maxIncSubarr(a, n)
{
     
    // Create two arrays pre and pos
    let pre = new Array(n);
    let pos = new Array(n);
    pre.fill(0);
    pos.fill(0);
    pre[0] = 1;
    pos[n - 1] = 1;
    let l = 0;
 
    // Find out the contribution of the current
    // element in array[0, i] and update pre[i]
    for(let i = 1; i < n; i++)
    {
        if (a[i] > a[i - 1])
            pre[i] = pre[i - 1] + 1;
        else
            pre[i] = 1;
    }
 
    // Find out the contribution of the current
    // element in array[N - 1, i] and update pos[i]
    l = 1;
    for(let i = n - 2; i >= 0; i--)
    {
        if (a[i] < a[i + 1])
            pos[i] = pos[i + 1] + 1;
        else
            pos[i] = 1;
    }
 
    // Calculate the maximum length of the
    // stricly increasing subarray without
    // removing any element
    let ans = 0;
    l = 1;
    for(let i = 1; i < n; i++)
    {
        if (a[i] > a[i - 1])
            l++;
        else
            l = 1;
        ans = Math.max(ans, l);
    }
 
    // Calculate the maximum length of the
    // strictly increasing subarray after
    // removing the current element
    for(let i = 1; i <= n - 2; i++)
    {
        if (a[i - 1] < a[i + 1])
            ans = Math.max(pre[i - 1] +
                           pos[i + 1], ans);
    }
    return ans;
}
 
// Driver code
let arr = [ 1, 2 ];
let n = arr.length;
 
document.write(maxIncSubarr(arr, n));
 
// This code is contributed by rameshtravel07
 
</script>
Output: 
2

 

Time Complexity: O(N)

Space Complexity: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!