Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximum Length Bitonic Subarray | Set 1 (O(n) time and O(n) space)

  • Difficulty Level : Medium
  • Last Updated : 31 Aug, 2021

Given an array A[0 … n-1] containing n positive integers, a subarray A[i … j] is bitonic if there is a k with i <= k <= j such that A[i] <= A[i + 1] … = A[k + 1] >= .. A[j – 1] > = A[j]. Write a function that takes an array as argument and returns the length of the maximum length bitonic subarray. 
Expected time complexity of the solution is O(n)
Simple Examples 
1) A[] = {12, 4, 78, 90, 45, 23}, the maximum length bitonic subarray is {4, 78, 90, 45, 23} which is of length 5.
2) A[] = {20, 4, 1, 2, 3, 4, 2, 10}, the maximum length bitonic subarray is {1, 2, 3, 4, 2} which is of length 5.
Extreme Examples 
1) A[] = {10}, the single element is bitonic, so output is 1.
2) A[] = {10, 20, 30, 40}, the complete array itself is bitonic, so output is 4.
3) A[] = {40, 30, 20, 10}, the complete array itself is bitonic, so output is 4.
 

Solution 
Let us consider the array {12, 4, 78, 90, 45, 23} to understand the solution. 
1) Construct an auxiliary array inc[] from left to right such that inc[i] contains length of the nondecreasing subarray ending at arr[i]. 
For A[] = {12, 4, 78, 90, 45, 23}, inc[] is {1, 1, 2, 3, 1, 1} 
2) Construct another array dec[] from right to left such that dec[i] contains length of nonincreasing subarray starting at arr[i]. 
For A[] = {12, 4, 78, 90, 45, 23}, dec[] is {2, 1, 1, 3, 2, 1}.
3) Once we have the inc[] and dec[] arrays, all we need to do is find the maximum value of (inc[i] + dec[i] – 1). 
For {12, 4, 78, 90, 45, 23}, the max value of (inc[i] + dec[i] – 1) is 5 for i = 3. 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

C++




// C++ program to find length of
// the longest bitonic subarray
#include <bits/stdc++.h>
using namespace std;
 
int bitonic(int arr[], int n)
{
    // Length of increasing subarray
    // ending at all indexes
    int inc[n];
     
    // Length of decreasing subarray
    // starting at all indexes
    int dec[n];
    int i, max;
 
    // length of increasing sequence
    // ending at first index is 1
    inc[0] = 1;
 
    // length of increasing sequence
    // starting at first index is 1
    dec[n-1] = 1;
 
    // Step 1) Construct increasing sequence array
    for (i = 1; i < n; i++)
    inc[i] = (arr[i] >= arr[i-1])? inc[i-1] + 1: 1;
 
    // Step 2) Construct decreasing sequence array
    for (i = n-2; i >= 0; i--)
    dec[i] = (arr[i] >= arr[i+1])? dec[i+1] + 1: 1;
 
    // Step 3) Find the length of
    // maximum length bitonic sequence
    max = inc[0] + dec[0] - 1;
    for (i = 1; i < n; i++)
        if (inc[i] + dec[i] - 1 > max)
            max = inc[i] + dec[i] - 1;
 
    return max;
}
 
/* Driver code */
int main()
{
    int arr[] = {12, 4, 78, 90, 45, 23};
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << "nLength of max length Bitonic Subarray is " << bitonic(arr, n);
    return 0;
}
 
// This is code is contributed by rathbhupendra

C




// C program to find length of the longest bitonic subarray
#include<stdio.h>
#include<stdlib.h>
 
int bitonic(int arr[], int n)
{
    int inc[n]; // Length of increasing subarray ending at all indexes
    int dec[n]; // Length of decreasing subarray starting at all indexes
    int i, max;
 
    // length of increasing sequence ending at first index is 1
    inc[0] = 1;
 
    // length of increasing sequence starting at first index is 1
    dec[n-1] = 1;
 
    // Step 1) Construct increasing sequence array
    for (i = 1; i < n; i++)
       inc[i] = (arr[i] >= arr[i-1])? inc[i-1] + 1: 1;
 
    // Step 2) Construct decreasing sequence array
    for (i = n-2; i >= 0; i--)
       dec[i] = (arr[i] >= arr[i+1])? dec[i+1] + 1: 1;
 
    // Step 3) Find the length of maximum length bitonic sequence
    max = inc[0] + dec[0] - 1;
    for (i = 1; i < n; i++)
        if (inc[i] + dec[i] - 1 > max)
            max = inc[i] + dec[i] - 1;
 
    return max;
}
 
/* Driver program to test above function */
int main()
{
    int arr[] = {12, 4, 78, 90, 45, 23};
    int n = sizeof(arr)/sizeof(arr[0]);
    printf("nLength of max length Bitonic Subarray is %d",
            bitonic(arr, n));
    return 0;
}

Java




// Java program to find length of the longest bitonic subarray
import java.io.*;
import java.util.*;
 
class Bitonic
{
    static int bitonic(int arr[], int n)
    {
        int[] inc = new int[n]; // Length of increasing subarray ending
                                // at all indexes
        int[] dec = new int[n]; // Length of decreasing subarray starting
                                // at all indexes
        int max;
 
        // Length of increasing sequence ending at first index is 1
        inc[0] = 1;
 
        // Length of increasing sequence starting at first index is 1
        dec[n-1] = 1;
 
        // Step 1) Construct increasing sequence array
        for (int i = 1; i < n; i++)
           inc[i] = (arr[i] >= arr[i-1])? inc[i-1] + 1: 1;
 
        // Step 2) Construct decreasing sequence array
        for (int i = n-2; i >= 0; i--)
            dec[i] = (arr[i] >= arr[i+1])? dec[i+1] + 1: 1;
 
        // Step 3) Find the length of maximum length bitonic sequence
        max = inc[0] + dec[0] - 1;
        for (int i = 1; i < n; i++)
            if (inc[i] + dec[i] - 1 > max)
                max = inc[i] + dec[i] - 1;
 
        return max;
    }
 
    /*Driver function to check for above function*/
    public static void main (String[] args)
    {
        int arr[] = {12, 4, 78, 90, 45, 23};
        int n = arr.length;
        System.out.println("Length of max length Bitnoic Subarray is "
                            + bitonic(arr, n));
    }
}
/* This code is contributed by Devesh Agrawal */

Python




# Python program to find length of the longest bitonic subarray
 
def bitonic(arr, n):
     
    # Length of increasing subarray ending at all indexes
    inc = [None] * n
     
    # Length of decreasing subarray starting at all indexes
    dec = [None] * n
     
    # length of increasing sequence ending at first index is 1
    inc[0] = 1
     
    # length of increasing sequence starting at first index is 1
    dec[n-1] = 1
 
    # Step 1) Construct increasing sequence array
    for i in range(n):
        if arr[i] >= arr[i-1]:
            inc[i] = inc[i-1] + 1
        else:
            inc[i] = 1
 
    # Step 2) Construct decreasing sequence array
    for i in range(n-2,-1,-1):
        if arr[i] >= arr[i-1]:
            dec[i] = inc[i-1] + 1
        else:
            dec[i] = 1
 
    # Step 3) Find the length of maximum length bitonic sequence
    max = inc[0] + dec[0] - 1
    for i in range(n):
        if inc[i] + dec[i] - 1 > max:
            max = inc[i] + dec[i] - 1
 
    return max
 
# Driver program to test above function
 
arr = [12, 4, 78, 90, 45, 23]
n = len(arr)
print("nLength of max length Bitonic Subarray is ",bitonic(arr, n))

C#




// C# program to find length of the
// longest bitonic subarray
using System;
 
class GFG
{
    static int bitonic(int []arr, int n)
    {
        // Length of increasing subarray ending
        // at all indexes
        int[] inc = new int[n];
         
        // Length of decreasing subarray starting
        // at all indexes
        int[] dec = new int[n];
         
        int max;
 
        // Length of increasing sequence
        // ending at first index is 1
        inc[0] = 1;
 
        // Length of increasing sequence
        // starting at first index is 1
        dec[n - 1] = 1;
 
        // Step 1) Construct increasing sequence array
        for (int i = 1; i < n; i++)
        inc[i] = (arr[i] >= arr[i - 1]) ?
                 inc[i - 1] + 1: 1;
 
        // Step 2) Construct decreasing sequence array
        for (int i = n - 2; i >= 0; i--)
            dec[i] = (arr[i] >= arr[i + 1]) ?
                     dec[i + 1] + 1: 1;
 
        // Step 3) Find the length of maximum
        // length bitonic sequence
        max = inc[0] + dec[0] - 1;
        for (int i = 1; i < n; i++)
            if (inc[i] + dec[i] - 1 > max)
                max = inc[i] + dec[i] - 1;
 
        return max;
    }
 
    // Driver function
    public static void Main ()
    {
        int []arr = {12, 4, 78, 90, 45, 23};
        int n = arr.Length;
        Console.Write("Length of max length Bitonic Subarray is "
                      + bitonic(arr, n));
    }
}
// This code is contributed by Sam007

PHP




<?php
// PHP program to find length of
// the longest bitonic subarray
 
function bitonic($arr, $n)
{
    $i; $max;
    // length of increasing sequence
    // ending at first index is 1
    $inc[0] = 1;
 
    // length of increasing sequence
    // starting at first index is 1
    $dec[$n - 1] = 1;
 
    // Step 1) Construct increasing
    // sequence array
    for ($i = 1; $i < $n; $i++)
    $inc[$i] = ($arr[$i] >= $arr[$i - 1]) ?
                          $inc[$i - 1] + 1: 1;
 
    // Step 2) Construct decreasing
    // sequence array
    for ($i = $n - 2; $i >= 0; $i--)
    $dec[$i] = ($arr[$i] >= $arr[$i + 1]) ?
                          $dec[$i + 1] + 1: 1;
 
    // Step 3) Find the length of
    // maximum length bitonic sequence
    $max = $inc[0] + $dec[0] - 1;
    for ($i = 1; $i < $n; $i++)
        if ($inc[$i] + $dec[$i] - 1 > $max)
            $max = $inc[$i] + $dec[$i] - 1;
 
    return $max;
}
 
// Driver Code
$arr = array(12, 4, 78, 90, 45, 23);
$n = sizeof($arr);
echo "Length of max length Bitonic " .
     "Subarray is ", bitonic($arr, $n);
     
// This code is contributed by aj_36
?>

Javascript




<script>
 
    // Javascript program to find length of the
    // longest bitonic subarray
     
    function bitonic(arr, n)
    {
        // Length of increasing subarray ending
        // at all indexes
        let inc = new Array(n);
           
        // Length of decreasing subarray starting
        // at all indexes
        let dec = new Array(n);
           
        let max;
   
        // Length of increasing sequence
        // ending at first index is 1
        inc[0] = 1;
   
        // Length of increasing sequence
        // starting at first index is 1
        dec[n - 1] = 1;
   
        // Step 1) Construct increasing sequence array
        for (let i = 1; i < n; i++)
            inc[i] = (arr[i] >= arr[i - 1]) ? inc[i - 1] + 1: 1;
   
        // Step 2) Construct decreasing sequence array
        for (let i = n - 2; i >= 0; i--)
            dec[i] = (arr[i] >= arr[i + 1]) ? dec[i + 1] + 1: 1;
   
        // Step 3) Find the length of maximum
        // length bitonic sequence
        max = inc[0] + dec[0] - 1;
        for (let i = 1; i < n; i++)
            if (inc[i] + dec[i] - 1 > max)
                max = inc[i] + dec[i] - 1;
   
        return max;
    }
     
    let arr = [12, 4, 78, 90, 45, 23];
    let n = arr.length;
    document.write("Length of max length Bitonic Subarray is " + bitonic(arr, n));
                       
</script>
Output



nLength of max length Bitonic Subarray is 5

Output : 
 

Length of max length Bitnoic Subarray is 5

Time Complexity : O(n) 
Auxiliary Space : O(n)
 

Maximum Length Bitonic Subarray | Set 2 (O(n) time and O(1) Space)
As an exercise, extend the above implementation to print the longest bitonic subarray also. The above implementation only returns the length of such subarray. 
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!