Skip to content
Related Articles
Maximum items that can be bought with the given type of coins
• Last Updated : 03 May, 2021

Given three integers X, Y and Z which represent the number of coins to buy some items. The cost of items is given below:

The task is to find the maximum number of items that can be bought with the given number of coins.

Input: X = 4, Y = 5, Z = 6
Output:
Buy 1 item of type 1: X = 1, Y = 5, Z = 6
Buy 1 item of type 2: X = 1, Y = 2, Z = 6
Buy 2 items of type 3: X = 1, Y = 2, Z = 0
Total items bought = 1 + 1 + 2 = 4
Input: X = 6, Y = 7, Z = 9
Output:

Approach: The count of items of type1, type2 and type3 that can be bought will be X / 3, Y / 3 and Z / 3 respectively. Now, the number of coins will get reduced after buying these items as X = X % 3, Y = Y % 3 and Z = Z % 3. Since, buying the item of type 4 requires a coin from each of the type. So, the total items of type 4 that can be bought will be the minimum of X, Y and Z and the result will be the sum of these items which were bought from each of the type.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `const` `int` `COST = 3;` `// Function to find maximum fruits``// Can buy from given values of x, y, z.``int` `maxItems(``int` `x, ``int` `y, ``int` `z)``{` `    ``// Items of type 1 that can be bought``    ``int` `type1 = x / COST;` `    ``// Update the coins``    ``x %= COST;` `    ``// Items of type 2 that can be bought``    ``int` `type2 = y / COST;` `    ``// Update the coins``    ``y %= COST;` `    ``// Items of type 3 that can be bought``    ``int` `type3 = z / COST;` `    ``// Update the coins``    ``z %= COST;` `    ``// Items of type 4 that can be bought``    ``// To buy a type 4 item, a coin``    ``// of each type is required``    ``int` `type4 = min(x, min(y, z));` `    ``// Total items that can be bought``    ``int` `maxItems = type1 + type2 + type3 + type4;``    ``return` `maxItems;``}` `// Driver code``int` `main()``{``    ``int` `x = 4, y = 5, z = 6;` `    ``cout << maxItems(x, y, z);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.io.*;` `class` `GFG``{``static` `int` `COST = ``3``;` `// Function to find maximum fruits``// Can buy from given values of x, y, z.``static` `int` `maxItems(``int` `x, ``int` `y, ``int` `z)``{` `    ``// Items of type 1 that can be bought``    ``int` `type1 = x / COST;` `    ``// Update the coins``    ``x %= COST;` `    ``// Items of type 2 that can be bought``    ``int` `type2 = y / COST;` `    ``// Update the coins``    ``y %= COST;` `    ``// Items of type 3 that can be bought``    ``int` `type3 = z / COST;` `    ``// Update the coins``    ``z %= COST;` `    ``// Items of type 4 that can be bought``    ``// To buy a type 4 item, a coin``    ``// of each type is required``    ``int` `type4 = Math.min(x, Math.min(y, z));` `    ``// Total items that can be bought``    ``int` `maxItems = type1 + type2 + type3 + type4;``    ``return` `maxItems;``}` `// Driver code``public` `static` `void` `main (String[] args)``{``    ``int` `x = ``4``, y = ``5``, z = ``6``;``    ``System.out.println(maxItems(x, y, z));``}``}` `// This code is contributed by @tushil`

## Python3

 `# Python3 implementation of the approach``COST ``=` `3``;` `# Function to find maximum fruits``# Can buy from given values of x, y, z.``def` `maxItems(x, y, z) :` `    ``# Items of type 1 that can be bought``    ``type1 ``=` `x ``/``/` `COST;` `    ``# Update the coins``    ``x ``%``=` `COST;` `    ``# Items of type 2 that can be bought``    ``type2 ``=` `y ``/``/` `COST;` `    ``# Update the coins``    ``y ``%``=` `COST;` `    ``# Items of type 3 that can be bought``    ``type3 ``=` `z ``/``/` `COST;` `    ``# Update the coins``    ``z ``%``=` `COST;` `    ``# Items of type 4 that can be bought``    ``# To buy a type 4 item, a coin``    ``# of each type is required``    ``type4 ``=` `min``(x, ``min``(y, z));` `    ``# Total items that can be bought``    ``maxItems ``=` `type1 ``+` `type2 ``+` `type3 ``+` `type4;``    ``return` `maxItems;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``x ``=` `4``; y ``=` `5``; z ``=` `6``;` `    ``print``(maxItems(x, y, z));` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``static` `int` `COST = 3;` `// Function to find maximum fruits``// Can buy from given values of x, y, z.``static` `int` `maxItems(``int` `x, ``int` `y, ``int` `z)``{` `    ``// Items of type 1 that can be bought``    ``int` `type1 = x / COST;` `    ``// Update the coins``    ``x %= COST;` `    ``// Items of type 2 that can be bought``    ``int` `type2 = y / COST;` `    ``// Update the coins``    ``y %= COST;` `    ``// Items of type 3 that can be bought``    ``int` `type3 = z / COST;` `    ``// Update the coins``    ``z %= COST;` `    ``// Items of type 4 that can be bought``    ``// To buy a type 4 item, a coin``    ``// of each type is required``    ``int` `type4 = Math.Min(x, Math.Min(y, z));` `    ``// Total items that can be bought``    ``int` `maxItems = type1 + type2 + type3 + type4;``    ``return` `maxItems;``}` `// Driver code``static` `public` `void` `Main ()``{``    ``int` `x = 4, y = 5, z = 6;``    ` `    ``Console.Write (maxItems(x, y, z));``}``}` `// This code is contributed by ajit..`

## Javascript

 ``
Output:
`4`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up